8 resultados para Arkansas. State Highway Commission.
em Digital Commons at Florida International University
Resumo:
Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^
Resumo:
The rate of fatal crashes in Florida has remained significantly higher than the national average for the last several years. The 2003 statistics from the National Highway Traffic Safety Administration (NHTSA), the latest available, show a fatality rate in Florida of 1.71 per 100 million vehicle-miles traveled compared to the national average of 1.48 per 100 million vehicle-miles traveled. The objective of this research is to better understand the driver, environmental, and roadway factors that affect the probability of injury severity in Florida. ^ In this research, the ordered logit model was used to develop six injury severity models; single-vehicle and two-vehicle crashes on urban freeways and urban principal arterials and two-vehicle crashes at urban signalized and unsignalized intersections. The data used in this research included all crashes that occurred on the state highway system for the period from 2001 to 2003 in the Southeast Florida region, which includes the Miami-Dade, Broward and Palm Beach Counties.^ The results of the analysis indicate that the age group and gender of the driver at fault were significant factors of injury severity risk across all models. The greatest risk of severe injury was observed for the age groups 55 to 65 and 66 and older. A positive association between injury severity and the race of the driver at fault was also found. Driver at fault of Hispanic origin was associated with a higher risk of severe injury for both freeway models and for the two-vehicle crash model on arterial roads. A higher risk of more severe injury crash involvement was also found when an African-American was the at fault driver on two-vehicle crashes on freeways. In addition, the arterial class was also found to be positively associated with a higher risk of severe crashes. Six-lane divided arterials exhibited the highest injury severity risk of all arterial classes. The lowest severe injury risk was found for one way roads. Alcohol involvement by the driver at fault was also found to be a significant risk of severe injury for the single-vehicle crash model on freeways. ^
Resumo:
Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
In his essay - Toward a Better Understanding of the Evolution of Hotel Development: A Discussion of Product-Specific Lodging Demand - by John A. Carnella, Consultant, Laventhol & Horwath, cpas, New York, Carnella initially describes his piece by stating: “The diversified hotel product in the united states lodging market has Resulted in latent room-night demand, or supply-driven demand resulting from the introduction of a lodging product which caters to a specific set of hotel patrons. The subject has become significant as the lodging market has moved toward segmentation with regard to guest room offerings. The author proposes that latent demand is a tangible, measurable phenomenon best understood in light of the history of the guest room product from its infancy to its present state.” The article opens with an ephemeral depiction of hotel development in the United States, both pre’ and post World War II. To put it succinctly, the author wants you to know that the advent of the inter-state highway system changed the complexion of the hotel industry in the U.S. “Two essential ingredients were necessary for the next phase of hotel development in this country. First was the establishment of the magnificently intricate infrastructure which facilitated motor vehicle transportation in and around the then 48 states of the nation,” says Carnella. “The second event…was the introduction of affordable highway travel. Carnella goes on to say that the next – big thing – in hotel evolution was the introduction of affordable air travel. “With the airways filled with potential lodging guests, developers moved next to erect a new genre of hotel, the airport hotel,” Carnella advances his picture. Growth progressed with the arrival of the suburban hotel concept, which wasn’t fueled by developments in transportation, but by changes in people’s living habits, i.e. suburban affiliations as opposed to urban and city population aggregates. The author explores the distinctions between full-service and limited service lodging operations. “The market of interest with consideration to the extended-stay facility is one dominated by corporate office parks,” Carnella proceeds. These evolutional states speak to latent demand, and even further to segmentation of the market. “Latent demand… is a product-generated phenomenon in which the number of potential hotel guests increases as the direct result of the introduction of a new lodging facility,” Carnella brings his unique insight to the table with regard to the specialization process. The demand is already there; just waiting to be tapped. In closing, “…there must be a consideration of the unique attributes of a lodging facility relative to its ability to attract guests to a subject market, just as there must be an examination of the property's ability to draw guests from within the subject market,” Carnella proposes.
Resumo:
Lateral load distribution factor is a key factor for designing and analyzing curved steel I-girder bridges. In this dissertation, the effects of various parameters on moment and shear distribution for curved steel I-girder bridges were studied using the Finite Element Method (FEM). The parameters considered in the study were: radius of curvature, girder spacing, overhang, span length, number of girders, ratio of girder stiffness to overall bridge stiffness, slab thickness, girder longitudinal stiffness, cross frame spacing, and girder torsional inertia. The variations of these parameters were based on the statistical analysis of the real bridge database, which was created by extracting data from existing or newly designed curved steel I-girder bridge plans collected all over the nation. A hypothetical bridge superstructure model that was made of all the mean values of the data was created and used for the parameter study. ^ The study showed that cross frame spacing and girder torsional inertia had negligible effects. Other parameters had been identified as key parameters. Regression analysis was conducted based on the FEM analysis results and simplified formulas for predicting positive moment, negative moment, and shear distribution factors were developed. Thirty-three real bridges were analyzed using FEM to verify the formulas. The ratio of the distribution factor obtained from the formula to the one obtained from the FEM analysis, which was referred to as the g-ratio, was examined. The results showed that the standard deviation of the g-ratios was within 0.04 to 0.06 and the mean value of the g-ratios was greater than unity by one standard deviation. This indicates that the formulas are conservative in most cases but not overly conservative. The final formulas are similar in format to the current American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) specifications. ^ The developed formulas were compared with other simplified methods. The outcomes showed that the proposed formulas had the most accurate results among all methods. ^ The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges. ^
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.