12 resultados para Application performance monitoring.

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Governmental accountability is the requirement of government entities to be accountable to the citizenry in order to justify the raising and expenditure of public resources. The concept of service efforts and accomplishments measurement for government programs was introduced by the Governmental Accounting Standards Board (GASB) in Service Efforts and Accomplishments Reporting: Its Time Has Come (1990). This research tested the feasibility of implementing the concept for the Federal-aid highway construction program and identified factors affecting implementation with a case study of the District of Columbia. Changes in condition and performance ratings for specific highway segments in 15 projects, before and after construction expenditures, were evaluated using data provided by the Federal Highway Administration. The results of the evaluation indicated difficulty in drawing conclusions on the state program performance, as a whole. The state program reflects problems within the Federally administered program that severely limit implementation of outcome-oriented performance measurement. Major problems identified with data acquisition are: data reliability, availability, compatibility and consistency among states. Other significant factors affecting implementation are institutional barriers and political barriers. Institutional issues in the Federal Highway Administration include the lack of integration of the fiscal project specific database with the Highway Performance Monitoring System database. The Federal Highway Administration has the ability to resolve both of the data problems, however interviews with key Federal informants indicate this will not occur without external directives and changes to the Federal “stewardship” approach to program administration. ^ The findings indicate many issues must be resolved for successful implementation of outcome-oriented performance measures in the Federal-aid construction program. The issues are organizational and political in nature, however in the current environment resolution is possible. Additional research is desirable and would be useful in overcoming the obstacles to successful implementation. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The environmental dynamics of dissolved organic matter (DOM) were characterized for a shallow, subtropical, seagrass-dominated estuarine bay, namely Florida Bay, USA. Large spatial and seasonal variations in DOM quantity and quality were assessed using dissolved organic C (DOC) measurements and spectrophotometric properties including excitation emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC). Surface water samples were collected monthly for 2 years across the bay. DOM characteristics were statistically different across the bay, and the bay was spatially characterized into four basins based on chemical characteristics of DOM as determined by EEM-PARAFAC. Differences between zones were explained based on hydrology, geomorphology, and primary productivity of the local seagrass community. In addition, potential disturbance effects from a very active hurricane season were identified. Although the overall seasonal patterns of DOM variations were not significantly affected on a bay-wide scale by this disturbance, enhanced freshwater delivery and associated P and DOM inputs (both quantity and quality) were suggested as potential drivers for the appearance of algal blooms in high impact areas. The application of EEM-PARAFAC proved to be ideally suited for studies requiring high sample throughput methods to assess spatial and temporal ecological drivers and to determine disturbance-induced impacts in aquatic ecosystems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tree islands, a prominent feature in both the marl prairie and ridge and slough landscapes of the Everglades, are sensitive to large-scale restoration actions associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect the internal water economy of islands, which in turn will influence plant community structure and function. To strengthen our ability to assess the “performance” of tree island ecosystems and predict how these hydrologic alterations would translate into ecosystem response, an improved understating of reference conditions of vegetation structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to associated physical and biological processes was initiated in 2005 with initial funding from Everglades National Park and South Florida Water Management District (SFWMD). The study continued through 2011 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0019 Modification No.: P00001).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. ^ However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. ^ In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. ^ The main device is a micro-ring resonator filter of 10 μm of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 × 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. ^ In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. ^ Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The drugs studied in this work have been reportedly used to commit drug-facilitated sexual assault (DFSA), commonly known as "date rape". Detection of the drugs was performed using high-performance liquid chromatography with ultraviolet detection (HPLC/UV) and identified with high performance-liquid chromatography mass spectrometry (HPLC/MS) using selected ion monitoring (SIM). The objective of this study was to develop a single HPLC method for the simultaneous detection, identification and quantitation of these drugs. The following drugs were simultaneously analyzed: Gamma-hydroxybutyrate (GHB), scopolamine, lysergic acid diethylamide, ketamine, flunitrazepam, and diphenhydramine. The results showed increased sensitivity with electrospray (ES) ionization versus atmospheric pressure chemical ionization (APCI) using HPLC/MS. HPLC/ES/MS was approximately six times more sensitive than HPLC/APCI/MS and about fifty times more sensitive than HPLC/UV. A limit of detection (LOD) of 100 ppb was achieved for drug analysis using this method. The average linear regression coefficient of correlation squared (r2) was 0.933 for HPLC/UV and 0.998 for HPLC/ES/MS. The detection limits achieved by this method allowed for the detection of drug dosages used in beverage tampering. This method can be used to screen beverages suspected of drug tampering. The results of this study demonstrated that solid phase microextraction (SPME) did not improve sensitivity as an extraction technique when compared to direct injections of the drug standards.