7 resultados para Analysis software
em Digital Commons at Florida International University
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
This study examined the motivation of college and university faculty to implement service-learning into their traditional courses. The benefits derived by faculty, as well as those issues of maintenance, including supports and/or obstacles, were also investigated in relation to their impact on motivation. The focus was on generating theory from the emerging data. ^ Data were collected from interviews with 17 faculty teaching courses that included a component of service-learning. A maximum variation sampling of participants from six South Florida colleges and universities was utilized. Faculty participants represented a wide range of academic disciplines, faculty ranks, years of experience in teaching and using service-learning as well as gender and ethnic diversity. For data triangulation, a focus group with eight additional college faculty was conducted and documents, including course syllabi and institutional service-learning handbooks, collected during the interviews were examined. The interviews were transcribed and coded using traditional methods as well as with the assistance of the computerized assisted qualitative data analysis software, Atlas.ti. The data were organized into five major categories with themes and sub-themes emerging for each. ^ While intrinsic or personal factors along with extrinsic factors all serve to influence faculty motivation, the study's findings revealed that the primary factors influencing faculty motivation to adopt service-learning were those that were intrinsic or personal in nature. These factors included: (a) past experiences, (b) personal characteristics including the value of serving, (c) involvement with community service, (d) interactions and relationships with peers, (e) benefits to students, (f) benefits to teaching, and (g) perceived career benefits. Implications and recommendations from the study encompass suggestions for administrators in higher education institutions for supporting and encouraging faculty adoption of service-learning including a well developed infrastructure as well as incentives, particularly during the initial implementation period, rewards providing recognition for the academic nature of service-learning and support for the development of peer relationships among service-learning faculty. ^
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
Software architecture is the abstract design of a software system. It plays a key role as a bridge between requirements and implementation, and is a blueprint for development. The architecture represents a set of early design decisions that are crucial to a system. Mistakes in those decisions are very costly if they remain undetected until the system is implemented and deployed. This is where formal specification and analysis fits in. Formal specification makes sure that an architecture design is represented in a rigorous and unambiguous way. Furthermore, a formally specified model allows the use of different analysis techniques for verifying the correctness of those crucial design decisions. ^ This dissertation presented a framework, called SAM, for formal specification and analysis of software architectures. In terms of specification, formalisms and mechanisms were identified and chosen to specify software architecture based on different analysis needs. Formalisms for specifying properties were also explored, especially in the case of non-functional properties. In terms of analysis, the dissertation explored both the verification of functional properties and the evaluation of non-functional properties of software architecture. For the verification of functional property, methodologies were presented on how to apply existing model checking techniques on a SAM model. For the evaluation of non-functional properties, the dissertation first showed how to incorporate stochastic information into a SAM model, and then explained how to translate the model to existing tools and conducts the analysis using those tools. ^ To alleviate the analysis work, we also provided a tool to automatically translate a SAM model for model checking. All the techniques and methods described in the dissertation were illustrated by examples or case studies, which also served a purpose of advocating the use of formal methods in practice. ^
Resumo:
The purpose of this study was to determine the flooding potential of contaminated areas within the White Oak Creek watershed in the Oak Ridge Reservation in Tennessee. The watershed was analyzed with an integrated surface and subsurface numerical model based on MIKE SHE/MIKE 11 software. The model was calibrated and validated using five decades of historical data. A series of simulations were conducted to determine the watershed response to 25 year, 100 year and 500 year precipitation forecasts; flooding maps were generated for those events. Predicted flood events were compared to Log Pearson III flood flow frequency values for validation. This investigation also provides an improved understanding of the water fluxes between the surface and subsurface subdomains as they affect flood frequencies. In sum, this study presents crucial information to further assess the environmental risks of potential mobilization of contaminants of concern during extreme precipitation events.