6 resultados para Amphipods

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expansive periphyton mats are a striking characteristic of the Florida Everglades. Floating periphyton mats are home to a diverse macroinvertebrate community dominated by chironomid and ceratopogonid larvae and amphipods that use the mat as both a food resource and refuge from predation. While this periphyton complex functions as a self-organizing system, it also serves as a base for trophic interactions with larger organisms. The purpose of my research was to quantify variation in the macroinvertebrate community inhabiting floating periphyton mats, describe the role of mats in shaping food-web dynamics, and describe how these trophic interactions change with eutrophication. ^ I characterized the macroinvertebrate community inhabiting periphyton through a wet-season by describing spatial variation on scales from 0.2 m to 3 km. Floating periphyton mats contained a diverse macroinvertebrate community, with greater taxonomic richness and higher densities of many taxa than adjacent microhabitats. Macroinvertebrate density increased through the wet season as periphyton mats developed. While some variation was noted among sites, spatial patterns were not observed on smaller scales. I also sampled ten sites representing gradients of hydroperiod and nutrient (P) levels. The density of macroinvertebrates inhabiting periphyton mats increased with increasing P availability; however, short-hydroperiod P-enriched sites had the highest macroinvertebrate density. This pattern suggests a synergistic interaction of top-down and bottom-up effects. In contrast, macroinvertebrate density was lower in benthic floc, where it was negatively correlated with hydroperiod. ^ I used two types of mesocosms (field cages and tanks) to manipulate large consumers (fish and grass shrimp) with inclusion/exclusion cages over an experimental P gradient. In most cases, periphyton mats served as an effective predation refuge. Macroinvertebrates were consumed more frequently in P-enriched treatments, where mats were also heavily grazed. Macroinvertebrate densities decreased with increasing P in benthic floc, but increased with enrichment in periphyton mats until levels were reached that caused disassociation of the mat. ^ This research documents several indirect trophic interactions that can occur in complex habitats, and emphasizes the need to characterize dynamics of all microhabitats to fully describe the dynamics of an ecosystem. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the relative importance of top-down and bottom-up effects by experimentally evaluating the combined and separate effects of nutrient availability and grazer species composition on epiphyte communities and seagrass condition in Florida Bay. Although we succeeded in substantially enriching our experimental cylinders, as indicated by elevated nitrogen concentrations in epiphytes and seagrass leaves, we did not observe any major increases in epiphyte biomass or major loss of Thalassia testudinum by algal overgrowth. Additionally, we did not detect any strong grazer effects and found very few significant nutrient-grazer interactions. While this might suggest that there was no important differential response to nutrients by individual grazer species or by various combinations of grazers, our results were complicated by the lack of significant differences between control and grazer treatments, and as such, these results are best explained by the presence of unwanted amphipod grazers (mean = 471 ind. m–2) in the control cylinders. Our estimates of grazing rates and epiphyte productivities indicate that amphipods in the control cylinders could have lowered epiphyte biomass to the same level that the experimental grazers did, thus effectively transforming the control treatments into grazer treatments. If so, our experiments suggest that the effects of invertebrate grazing (and those of amphipods alone) were stronger than the effects of nutrient enrichment on epiphytic algae, and that it does not require a large density

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative importance of algal and detrital energy pathways remains a central question in wetlands ecology. We used bulk stable isotope analysis and fatty acid composition to investigate the relative contributions of periphyton (algae) and floc (detritus) in a freshwater wetland with the goal of determining the inputs of these resource pools to lower trophic-level consumers. All animal samples revealed fatty acid markers indicative of both microbial (detrital) and algal origins, though the relative contributions varied among species. Vascular plant markers were in low abundance in most consumers. Detritivory is important for chironomids and amphipods, as demonstrated by the enhanced bacterial fatty acids present in both consumers, while algal resources, in the form of periphyton, likely support ephemeropteran larvae. Invertebrates such as amphipods and grass shrimp appear to be important resources for small omnivorous fish, while Poecilia latipinna appear to strongly use periphyton and Ephemeroptera larvae as food sources. Both P. latipinna and Lepomis spp. assimilated small amounts of vascular plant debris, possibly due to unintentional ingestion of floc while foraging for invertebrates and insect larvae. Physid snails, Haitia spp., were characterized by considerably different fatty acid compositions than other taxa examined, and likely play a unique role in Everglades’ food webs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of large predators on lower trophic levels in oligotrophic, structurally complex, and frequently disturbed aquatic environments is generally thought to be limited. We looked for effects of large predators in two semi-permanent, spikerush-dominated marshes by excluding large fish (>12 mm body depth) and similarly sized herpetofauna from 1 m2 cages (exclosures) for 2 weeks. The exclosures allowed for colonization by intermediate (in size and trophic position) consumers, such as small fish, shrimp, and crayfish. Exclosures were compared to control cages that allowed large fish to move freely in and out. At the end of the experiment, intermediate-consumer densities were higher in exclosures than in controls at both sites. Decapod crustaceans, especially the riverine grass shrimp (Palaemonetes paludosus), accounted for the majority of the response. Effects of large fish on shrimp were generally consistent across sites, but per capita effects were sensitive to estimates of predator density. Densities of intermediate consumers in our exclosures were similar to marsh densities, while the open controls had lower densities. This suggests that these animals avoided our experimental controls because they were risky relative to the surrounding environment, while the exclosures were neither avoided nor preferred. Although illuminating about the dynamics of open-cage experiments, this finding does not influence the main results of the study. Small primary consumers (mostly small snails, amphipods, and midges) living on floating periphyton mats and in flocculent detritus (“floc”) were less abundant in the exclosures, indicative of a trophic cascade. Periphyton mat characteristics (i.e., biomass, chlorophyll a, TP) were not clearly or consistently affected by the exclosure, but TP in the floc was lower in exclosures. The collective cascading effects of large predators were consistent at both sites despite differences in drought frequency, stem density, and productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.