8 resultados para Amphibians.
em Digital Commons at Florida International University
Resumo:
Habitat loss and fragmentation have been implicated as driving forces behind recent waves of extinction. The regional landscape where this study occurred is a mosaic of forest and grassland, and therefore provides an ideal system with which to investigate the implications of habitat patchiness for the distribution and ecology of organisms. Here I describe patterns of amphibian and reptile distribution among and within habitats at the study site, investigate associations between habitat and community structure, describe nested subset patterns on forest islands, and quantify the relationship between body size and density across ecological scales and taxonomic groups. ^ Species richness did not vary across habitats, between forest island isolation classes or between island edges and cores. In contrast, species composition varied at all three ecological scales, reflecting differences in the distribution of both forest and open-habitat affiliated species. Species composition was associated with multivariate habitat profiles, with differences occurring along the isolation gradient of forest islands rather than the area gradient. The relationship between species composition and habitat was stronger for amphibians than for reptiles, a pattern that may be ascribed to physiological differences between the two groups. Analysis of nested subset pattern of community structure indicated that species composition of islands is nested as a function of isolation. Four species whose distribution on forest islands seems to be dispersal-limited drive the relationship between nestedness and isolation. Although there were several examples of shifts in body size across spatial scales and taxonomic groups, body size was not associated with density as predicted by theory, which may reflect differences between real and habitat islands, or differential responses of poikilothermic vertebrates to changes in density relative to homeotherms. ^ Taken together, the strongest result to emerge from this research is the importance of isolation, rather than area, on community structure in this system. Much evidence suggested that different ecological groups of species show distinct patterns of distribution both within and among habitat types. This suggests that species distributions at this site are not the result of 'neutral' processes at the community level, but rather reflect fundamental differences in the ecology of component species. ^
Resumo:
Biological diversity is threatened worldwide and it is a priority to generate more information that can be used both for understanding ecological processes and determining conservation strategies. For my dissertation, I focused on amphibian diversity patterns in lowland rainforests of southwestern Amazonia to evaluate the importance of habitat heterogeneity in the region. My main purpose was to test the hypothesis that amphibian communities in different forest types differ in species richness, composition, and abundance. I used standardized visual encounter surveys to quantify the species composition and abundance of amphibians at four sites, each containing four forest types (floodplain, terra firme, bamboo, and palm swamp). I used leaf-litter plots to evaluate the effect of soil and leaf-litter characteristics on species richness and abundance of leaf-litter frogs. I intensively sampled at one site and then sampled three other sites (distance among sites varied 3.5–105 km) to evaluate whether the patterns observed at one site were similar elsewhere. I also updated the information on threatened and potentially threatened amphibians in Peru and my study region. I found that no species appears to have experienced population declines in southeastern Peru, suggesting that the region still contains the original species pool. My results support the hypothesis that amphibian communities differ across forest types and that patterns observed at the local scale (one site) are similar at the regional scale (four sites). My data also indicate that there is no correlation between species composition and geographic distance among sites. Instead, an important proportion of the gamma diversity is represented by habitat-related beta diversity. My leaf-litter plot data showed that part of the variation in the leaf-litter community structure is explained by soil and litter characteristics. I found that soil total phosphorus and, to a lesser extent, humidity, leaf-litter mass, and pH is linked to species presence/absence and abundance. My study provides the first standardized, quantitative comparison of amphibian community structure across four major forest types in southwestern Amazonia and highlights the fact that forest types are complementary and necessary for maintaining high species richness in the region.
Resumo:
Biological diversity is threatened worldwide and it is a priority to generate more information that can be used both for understanding ecological processes and determining conservation strategies. For my dissertation, I focused on amphibian diversity patterns in lowland rainforests of southwestern Amazonia to evaluate the importance of habitat heterogeneity in the region. My main purpose was to test the hypothesis that amphibian communities in different forest types differ in species richness, composition, and abundance. I used standardized visual encounter surveys to quantify the species composition and abundance of amphibians at four sites, each containing four forest types (floodplain, terra firme, bamboo, and palm swamp). I used leaf-litter plots to evaluate the effect of soil and leaf-litter characteristics on species richness and abundance of leaf-litter frogs. I intensively sampled at one site and then sampled three other sites (distance among sites varied 3.5-105 km) to evaluate whether the patterns observed at one site were similar elsewhere. I also updated the information on threatened and potentially threatened amphibians in Peru and my study region. I found that no species appears to have experienced population declines in southeastern Peru, suggesting that the region still contains the original species pool. My results support the hypothesis that amphibian communities differ across forest types and that patterns observed at the local scale (one site) are similar at the regional scale (four sites). My data also indicate that there is no correlation between species composition and geographic distance among sites. Instead, an important proportion of the gamma diversity is represented by habitat-related beta diversity. My leaf-litter plot data showed that part of the variation in the leaf-litter community structure is explained by soil and litter characteristics. I found that soil total phosphorus and, to a lesser extent, humidity, leaf-litter mass, and pH is linked to species presence/absence and abundance. My study provides the first standardized, quantitative comparison of amphibian community structure across four major forest types in southwestern Amazonia and highlights the fact that forest types are complementary and necessary for maintaining high species richness in the region.
Resumo:
In order to explore the conservation ecology of frogs and lizards in the Sarapiqui region of Costa Rica, I compared populations and communities among forest fragments and La Selva Biological Station, as well as across 35 years of sampling at La Selva. Species richness in nine fragments combined was 85% of that found in La Selva, and community composition varied among sites and by fragment size class. Although communities in fragments differed fundamentally from those in intact forest, the high diversity observed across all fragments indicates that preserving a network of small forest patches may be of great conservation value to the herpetofauna of this region. According to data from past studies at La Selva, most common species of leaf-litter frogs and lizards demonstrated significant decreases in density over the 35-year period. My findings may represent either natural population fluctuations or sweeping faunal declines at this site.
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^
Resumo:
Amphibian populations are declining even in pristine areas in many parts of the world, and in the Neotropics most such enigmatic amphibian declines have occurred in mid- to high-elevation sites. However, amphibian populations have also declined at La Selva Biological Station in the lowlands of Costa Rica, and similar declines in populations of lizards have occurred at the site as well. To set the stage for describing amphibian declines at La Selva, I thoroughly review knowledge of amphibian decline and amphibian conservation in Central America: I describe general patterns in biodiversity, evaluate major patterns in and ecological correlates of threat status, review trends in basic and applied conservation literature, and recommend directions for future research. I then synthesize data on population densities of amphibians, as well as ecologically similar reptiles, over a 35-year periods using quantitative datasets from a range of studies. This synthesis identifies assemblage-wide declines of approximately 75% for both amphibians and reptiles between 1970 and 2005. Because these declines defy patterns most commonly reported in the Neotropics, it is difficult to assess causality evoking known processes associated with enigmatic decline events. I conduct a 12-month pathogen surveillance program to evaluate infection of frogs by the amphibian chytrid fungus, an emerging pathogen linked to decline events worldwide Although lowland forests are generally believed to be too warm for presence or adverse population effects of chytridiomycosis, I present evidence for seasonal patterns in infection prevalence with highest prevalence in the coolest parts of the year. Finally, I conducted a 16-month field experiment to explore the role of changes to dynamics of leaf litter, a critical resource for both frogs and lizards. Population responses by frogs and lizards indicate that litter regulates population densities of frogs and lizards, particularly those species with the highest decline rate. My work illustrates that sites that are assumed to be pristine are likely impacted by a variety of novel stressors, and that even fauna within protected areas may be suffering unexpected declines.
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro- Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June - October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats.
Resumo:
A high proportion of amphibian species are threatened with extinction globally, and habitat loss and degradation are the most frequently implicated causes. Rapid deforestation for the establishment of agricultural production is a primary driver of habitat loss in tropical zones where amphibian diversity is highest. Land-cover change affects native assemblages, in part, through the reduction of habitat area and the reduction of movement among remnant populations. Decreased gene flow contributes to loss of genetic diversity, which limits the ability of local populations to respond to further environmental changes. The focus of this dissertation is on the degree to which common land uses in Sarapiquí, Costa Rica impede the movement of two common amphibian species. First, I used field experiments, including displacement trials, and a behavioral landscape ecology framework to investigate the resistance of pastures to movement of Oophaga pumilio. Results from experiments demonstrate that pastures do impede movement of O. pumilio relative to forest. Microclimatic effects on movement performance as well as limited perceptual ranges likely contribute to reduced return rates through pastures. Next, I linked local processes to landscape scale estimates of resistance. I conducted experiments to measure habitat-specific costs to movement for O. pumilio and Craugastor bransfodrii, and then used experimental results to parameterize connectivity models. Model validation indicated highest support for resistance estimates generated from responses to land-use specific microclimates for both species and to predator encounters for O. pumilio. Finally, I used abundance and experiment-derived resistance estimates to analyze the effects of prevalent land uses on population genetic structure of the two focal species. While O. pumilio did not exhibit a strong response to landscape heterogeneity and was primarily structured by distances among sites, C. bransfordii genetic variation was explained by resistance estimates from abundance and experiment data. Collectivity, this work demonstrates that common land uses can offer different levels of resistance to amphibian movements in Sarapiquí and illustrates the value of investigating local scales processes to inform interpretation of landscape-scale patterns.