3 resultados para Ambient oxigen concentration

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two deep-well injection sites in south Florida, USA, inject an average of 430 million liters per day (MLD) of treated domestic fresh wastewater into a deep saline aquifer 900 m below land surface. Elevated levels of NH3 (highest concentration 939 µmol) in the overlying aquifer above ambient concentrations (concentration less than 30 µmol) were evidence of the upward migration of injected fluids. Three pathways were distinguished based on ammonium, chloride and bromide ratios, and temperature. At the South District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained chemically distinct as it migrated upwards through rapid vertical pathways via density-driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it vertically migrated upwards; however, the temperature signal did not persist as the injectate moved horizontally into the overlying aquifers. Once introduced, the injectate moved slowly horizontally through the aquifer and mixed with ambient water. At the North District Wastewater Treatment Plant, data provide strong evidence of a one-time pulse of injectate into the overlying aquifers due to improper well construction. No evidence of rapid vertical pathways was observed at the North District Wastewater Treatment Plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne particulate matter (PM) is of environmental concern not only in urban but also rural areas that are easily inhalable and have been considered responsible, together with gaseous pollutants, for possible health effects. The objectives of this research study is to generate an extensive data set for ambient PM collected at Belle Glade and Delray Beach that ultimately was used together with published source profiles to predict the contributions of major sources to the overall airborne particle burden in Belle Glade and Delray Beach. ^ The size segregated particle sampling was conducted for one entire year. The samples collected during the months of January and May were further subjected to chemical analysis for organic compounds by Gas Chromatography-Mass Spectrometry. Additional, PM10 sampling was conducted simultaneously with size segregated particle sampling during January and May to analyze for trace elements using Instrumental Neutron Activation Analysis technique. Elements and organic marker compounds were used in Chemical Mass Balance modeling to determine the major source contribution to the ambient fine particle matter burden. ^ Size segregated particle distribution results show bimodal in both sampling sites. Sugarcane pre-harvest burning in the rural site elevated PM10 concentration by about 30% during the sugarcane harvest season compared to sugarcane growing season. Sea salt particles and Saharan dust particles accounted for the external sources. ^ The results of trace element analysis show that Al, Ca, Cs, Eu, Lu, Nd, Sc, Sm, Th, and Yb are more abundant at the rural sampling site. The trace elements Ba, Br, Ce, Cl, Cr, Fe, Gd, Hf, Na, Sb, Ta, V, and W show high abundance at the urban site due to anthropogenic activities except for Na and Cl, which are from sea salt spray. On the other hand, size segregated trace organic compounds measurements show that organic compounds mainly from combustion process were accumulated in PM0.95. ^ In conclusion, major particle sources were determined by the CMB8.2 software as follows: road dust, sugarcane leaf burning, diesel-powered and gasoline powered vehicle exhaust, leaf surface abrasion particles, and a very small fraction of meat cooking. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 9/11 Act mandates the inspection of 100% of cargo shipments entering the U.S. by 2012 and 100% inspection of air cargo by March 2010. So far, only 5% of inbound shipping containers are inspected thoroughly while air cargo inspections have fared better at 50%. Government officials have admitted that these milestones cannot be met since the appropriate technology does not exist. This research presents a novel planar solid phase microextraction (PSPME) device with enhanced surface area and capacity for collection of the volatile chemical signatures in air that are emitted from illicit compounds for direct introduction into ion mobility spectrometers (IMS) for detection. These IMS detectors are widely used to detect particles of illicit substances and do not have to be adapted specifically to this technology. For static extractions, PDMS and sol-gel PDMS PSPME devices provide significant increases in sensitivity over conventional fiber SPME. Results show a 50–400 times increase in mass detected of piperonal and a 2–4 times increase for TNT. In a blind study of 6 cases suspected to contain varying amounts of MDMA, PSPME-IMS correctly detected 5 positive cases with no false positives or negatives. One of these cases had minimal amounts of MDMA resulting in a false negative response for fiber SPME-IMS. A La (dihed) phase chemistry has shown an increase in the extraction efficiency of TNT and 2,4-DNT and enhanced retention over time. An alternative PSPME device was also developed for the rapid (seconds) dynamic sampling and preconcentration of large volumes of air for direct thermal desorption into an IMS. This device affords high extraction efficiencies due to strong retention properties under ambient conditions resulting in ppt detection limits when 3.5 L of air are sampled over the course of 10 seconds. Dynamic PSPME was used to sample the headspace over the following: MDMA tablets (12–40 ng detected of piperonal), high explosives (Pentolite) (0.6 ng detected of TNT), and several smokeless powders (26–35 ng of 2,4-DNT and 11–74 ng DPA detected). PSPME-IMS technology is flexible to end-user needs, is low-cost, rapid, sensitive, easy to use, easy to implement, and effective. ^