5 resultados para Alzheimer’s disease (AD)
em Digital Commons at Florida International University
Resumo:
Alzheimer’s disease (AD) is neuropathologically characterized by excessive beta -amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Although the etiology of genetic cases of AD has been attributed to mutations in presenilin and amyloid precursor protein (APP) genes, in most sporadic cases of AD, the etiology is still unknown and various predisposing factors could contribute to the pathology of AD. Predominant among these possible predisposing factors that have been implicated in AD are age, hypertension, traumatic brain injury, diabetes, chronic neuroinflammation, alteration in calcium levels and oxidative stress. Since both inflammation and altered calcium levels are implicated in the pathogenesis of AD, we wanted to study the effect of altered levels of calcium on inflammation and the subsequent effect of selective calcium channel blockers on the production of pro-inflammatory cytokines and chemokines. Our hypothesis is that Aβ, depending on it conformation, may contribute to altered levels of intracellular calcium in neurons and glial cells. We wanted to determine which conformation of Aβ was most pathogenic in terms of increasing inflammation and calcium influx and further elucidate the possibility of a link between altered calcium levels and inflammation. In addition, we wanted to test whether calcium channel blockers could inhibit the inflammation mediated by the most pathogenic form of Aβ, by antagonizing the calcium influx triggered by Aβ. Our results in human glial and neuronal cells demonstrate that the high molecular weight oligomers are the most potent at stimulating the release of pro-inflammatory cytokines IL-6 and IL-8 as well as increasing intracellular levels of calcium compared to other conformations of Aβ. Further, L-type calcium channel blockers and calmodulin kinase inhibitors are able to significantly reduce the levels of IL-6 and IL-8. These results suggest that Aβ-induced alteration of intracellular calcium levels contributes to its pro-inflammatory effect.
Resumo:
A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.
Resumo:
The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.
Resumo:
One of the pathological hallmarks of Alzheimer's disease (AD) brain is extracellular β-amyloid (Aβ) plaques containing 39-42 amino acid Aβ peptides. The deposition of Aβ around blood vessels, known as Cerebral amyloid angiopathy (CAA), is also a common feature in AD brain. Vascular density and cerebral blood flow are reduced in AD brains, and vascular risk factors such as hypertension and diabetes are also risk factors for AD. We have shown previously that Aβ peptides can potently inhibit angiogenesis both in-vitro and in-vivo, but the mechanism of action for this effect is not known. Therefore, my first hypothesis was that particular amino acid sequence(s) within the Aβ peptide are required for inhibition of angiogenesis. From this aim, I found a peptide sequence which was critical for anti-angiogenic activity (HHQKLVFF). This sequence contains a heparan sulfate proteoglycan growth factor binding domain implying that Aβ can interfere with growth factor signaling. Leading on from this, my second hypothesis was that Aβ can inhibit angiogenesis by binding to growth factor receptors. I found that Aβ can bind to Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), and showed that this is one mechanism by which Aβ can inhibit angiogenesis. Since the vasculature is disrupted in AD brains, I investigated whether a strategy to increase brain vascularization would be beneficial against AD pathology. Therefore, my third hypothesis was that voluntary exercise (which is known to increase brain vascularization in rodents) can ameliorate Aβ pathology, increase brain vascularization, and improve behavioral deficits in a transgenic mouse model of AD. I found that exercise has no effect on Aβ pathology, brain vascularization or behavioral deficits. Therefore, in the transgenic mouse model that I used, exercise is an ineffective therapeutic strategy against AD pathology and symptoms.
Resumo:
The amyloid cascade hypothesis places amyloid-β at the origin of Alzheimer's disease (AD). Amyloid-β (Aβ) is the product of the sequential cleavage of the amyloid precursor protein (APP) by the enzymes β- and γ-secretases. An inflammatory component to AD has been suggested in association with CD40 (a member of the tumor necrosis factor receptor superfamily (TNFRS) and its cognate ligand CD40L. In this study, I hypothesized that the neutralization of pro-inflammatory cytokines produced downstream of CD40/CD40L interaction would reduce APP processing. I also hypothesized that blocking the binding of different adaptor proteins to CD40 by mutating its cytoplasmic tail would result in significant reduction of the APP metabolites: Aβ, sAPPβ, sAPPα, CTFβ and CTFα. ^ Treatment with CD40L of human embryonic kidney cells over-expressing both APP and CD40 (HEK/APPsw/CD40) significantly increased levels of the cytokine granulocyte macrophage colony stimulating factor (GM-CSF). Neutralizing antibodies against GM-CSF mitigated the CD40L-induced production of Aβ in these cells. Treatment of the HEK/APPsw/CD40 cells with recombinant GM-CSF significantly increased Aβ levels. GM-CSF receptor gene silencing with shRNA significantly reduced Aβ levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Silencing of the GM-CSF receptor also decreased APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). ^ Using CD40 mutants, I show that CD40L can increase levels of Aβ(1-40), Aβ(1-42), sAPPβ, sAPPα and CTFβ independently of TRAF signaling. TRAFs had been shown to be necessary for most CD40/CD40L-dependent signaling. An increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells was observed, reflecting alterations in APP trafficking. CD4OL treatment of a neuroblastoma cell line over-expressing CTFβ suggested that CD40L affected γ-secretase activity. Inhibition of γ-secretase activity significantly reduced sAPPβ levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on γ-secretase and affects β-secretase via a positive feedback mechanism. ^ Taken together, the results of this dissertation suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Aβ production by influencing APP trafficking. Moreover, the data presented suggest that CD40/CD40L interaction can modulate APP processing via a mechanism independent of TRAF signaling. ^