5 resultados para Alanine Transaminase
em Digital Commons at Florida International University
Resumo:
Antibiotic resistance, production of alginate and virulence factors, and altered host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection. Failure of antibiotic therapy has been attributed to the emergence of P. aeruginosa strains that produce β-lactamase constitutively. In Enterobacteriaceae, β-lactamase induction involves four genes with known functions: ampC, ampR, ampD, and ampG, encoding the enzyme, transcriptional regulator, amidase and permease, respectively. In addition to all these amp genes, P. aeruginosa possesses two ampG paralogs, designated ampG and ampP. In this study, P. aeruginosa ampC, ampR, ampG and ampP were analyzed. Inactivation of ampC in the prototypic PAO1 failed to abolish the β-lactamase activity leading to the discovery of P. aeruginosa oxacillinase PoxB. Cloning and expression of poxB in Escherichia coli confers β-lactam resistance. Both AmpC and PoxB contribute to P. aeruginosa resistance against a wide spectrum of β-lactam antibiotics. The expression of PoxB and AmpC is regulated by a LysR-type transcriptional regulator AmpR that up-regulates AmpC but down-regulates PoxB activities. Analyses of P. aeruginosa ampR mutant demonstrate that AmpR is a global regulator that modulates the expressions of Las and Rhl quorum sensing (QS) systems, and the production of pyocyanin, LasA protease and LasB elastase. Introduction of the ampR mutation into an alginate-producing strain reveals the presence of a complex co-regulatory network between antibiotic resistance, QS alginate and other virulence factor production. Using phoA and lacZ protein fusion analyses, AmpR, AmpG and AmpP were localized to the inner membrane with one, 16 and 10 transmembrane helices, respectively. AmpR has a cytoplasmic DNA-binding and a periplasmic substrate binding domains. AmpG and AmpP are essential for the maximal expression of β-lactamase. Analysis of the murein breakdown products suggests that AmpG exports UDP-N-acetylmuramyl-L-alanine-γ-D-glutamate-meso-diaminopimelic acid-D-alanine-D-alanine (UDP-MurNAc-pentapeptide), the corepressor of AmpR, whereas AmpP imports N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid-Ala-γ-D-Glu-meso-diaminopimelic acid (GlcNAc-anhMurNAc-tripeptide) and GlcNAc-anhMurNAc-pentapeptide, the co-inducers of AmpR. This study reveals a complex interaction between the Amp proteins and murein breakdown products involved in P. aeruginosa β-lactamase induction. In summary, this dissertation takes us a little closer to understanding the P. aeruginosa complex co-regulatory mechanism in the development of β-lactam resistance and establishment of chronic infection. ^
Resumo:
There is increasing evidence that certain microbially-derived compounds may account for part of the aquatic dissolved organic nitrogen (DON) pool. Enantiomeric ratios of amino acids were used to assess the microbial input to the DON pool in the Florida Everglades, USA. Elevated levels of d-alanine, d-aspartic acid, d-glutamic acid and d-serine indicated the presence of peptidoglycan in the samples. The estimated peptidoglycan contribution to amino acid nitrogen ranged from 2.8 ± 0.1% to 6.4 ± 0.9%, increasing with salinity from freshwater to coastal waters. The distribution of individual d-amino acids in the samples suggests additional inputs to DON, possibly from archaea or from abiotic racemization of l-amino acids.
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. ^ It was initially found that comparing to wild type cells, gsk3 - cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. ^ I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.^
Resumo:
Reactive oxygen species are a normal consequence of life in an aerobic environment. However when they deviate from the narrow permissible range in cells, oxidative damage can occur. Dictyostelium discoideum is a model organism ideal for the study of cell signaling events such as those affected by oxidative stress. It was previously shown that Ras signaling in Dictyostelium is affected by genetic inactivation of the antioxidant enzyme Superoxide dismutase C (SodC) and in vitro data suggests that the NKCD motif of Ras is the redox target of superoxide. The main objective of this project was to determine the mechanism of superoxide mediated Ras regulation in vivo. To accomplish the main objective, we cloned, and in some cases, mutated different Ras proteins and later determined their activity in wild type and sodC- cells. RasC and RasD showed normal activation in sodC- cells, however RasG and RasS displayed high Ras activity. These last two Ras proteins contain the NKC118D motif inside the nucleotide binding region. A mutation of cysteine118 to alanine in RasG rendered the protein less active in sodC- than the wild type RasG protein and a mutation alanine118 to cysteine in RasD conferred redox sensitivity to this small GTPase. Additionally, the propensity of RasG to be targeted by superoxide was evident when the environment of wild type cells was manipulated to induce the internal generation of superoxide through changes in the extracellular ion levels mainly magnesium. Lack of magnesium ions increased the intracellular level of superoxide and severely hampered directional cell migration. Chemotaxis of cells expressing RasG was negatively impacted by the absence of magnesium ions; however rasG- cells did not seem to be affected in their ability to perform chemotaxis. The last experiment implies that RasG is an important mediator of cell signaling during oxidative stress, responsible for preventing cells from continuing their developmental program. Our study suggests that the cysteine residue in the NKCD motif is essential for mediating the redox sensitivity of Ras proteins in Dictyostelium and that RasG is an essential mediator of the response to oxidative stress in this organism.