2 resultados para Airflow resistivity
em Digital Commons at Florida International University
Resumo:
A description and model of the near-surface hydrothermal system at Casa Diablo, with its implications for the larger-scale hydrothermal system of Long Valley, California, is presented. The data include resistivity profiles with penetrations to three different depth ranges, and analyses of inorganic mercury concentrations in 144 soil samples taken over a 1.3 by 1.7 km area. Analyses of the data together with the mapping of active surface hydrothermal features (fumaroles, mudpots, etc.), has revealed that the relationship between the hydrothermal system, surface hydrothermal activity, and mercury anomalies is strongly controlled by faults and topography. There are, however, more subtle factors responsible for the location of many active and anomalous zones such as fractures, zones of high permeability, and interactions between hydrothermal and cooler groundwater. In addition, the near-surface location of the upwelling from the deep hydrothermal reservoir, which supplies the geothermal power plants at Casa Diablo and the numerous hot pools in the caldera with hydrothermal water, has been detected. The data indicate that after upwelling the hydrothermal water flows eastward at shallow depth for at least 2 km and probably continues another 10 km to the east, all the way to Lake Crowley.
Resumo:
The tidal influence on the Big Pine Key saltwater/freshwater interface was analyzed using time-lapse electrical resistivity imaging and shallow well measurements. The transition zone at the saltwater/freshwater interface was measured over part of a tidal cycle along three profiles. The resistivity was converted to salinity by deriving a formation factor for the Miami Oolite. A SEAWAT model was created to attempt to recreate the field measurements and test previously established hydrogeologic parameters. The results imply that the tide only affects the groundwater within 20 to 30 m of the coast. The effect is small and caused by flooding from the high tide. The low relief of the island means this effect is very sensitive to small changes in the magnitude. The SEAWAT model proved to be insufficient in modeling this effect. The study suggests that the extent of flooding is the largest influence on the salinity of the groundwater.