2 resultados para Air exposure

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Freshwater wetland soils of the Everglades were studied in order to assess present environmental conditions and paleo-environmental changes using organic geochemistry techniques. Organic matter in dominant vegetation, peat and marl soils was characterized by geochemical means. Samples were selected along nutrient and hydrology gradients with the objective to determine the historical sources of organic matter as well as the extent of its preservation. Effective molecular proxies were developed to differentiate the relative input of organic matter from different biological sources to wetland soils. Thus historical vegetation shifts and hydroperiods were reconstructed using those proxies. The data show good correlations with historical water management practices starting at the turn of the century and during the mid 1900's. Overall, significant shortening of hydroperiods during this period was observed. The soil organic matter (SOM) preservation was assessed through elemental analysis and molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. The relationship of the environmental conditions and degradation status of the soil organic matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod favor organic matter degradation in the soils. This is probably the result of an increase in the microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may enhance physical/chemical degradation processes. The most significant transformations of biomass litter in this environment are controlled by very early physical/chemical processes and once the OM is incorporated into surface soils, the diagenetic change, even over extended periods of time is comparatively minimal, and SOM is relatively well preserved regardless of hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued degradation than the SOM in the marl soils. The latter is presumably stabilized early on through direct air exposure (oxidation) and thus, it is more refractory to further diagenetic transformations such as humification and aromatization reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study attempted to determine if an excessive amount of 1,1,1 - Trichloroethane was released into the air, the acute effects of exposure and the cause(s) of excessive use. The types of degreasing equipments which were tested in this study are straight vapor and the vapor spray machines. The instruments utilized to obtain the data for this study are Gastech Haline Detector, Organic Vapor Monitor Badge and Personal Sampling Pump. Readings were taken on three different tanks. The data accumulated by this study were obtained during actual cleaning operation. During testing, increased exposure was detected due to exceeding the rate of removal, downward drafts were blowing right over the top of a degreaser and, in some cases, poor general ventilation caused solvent vapor to be blown out of the tank and into the workers' breathing zone, affecting excessive vapor drag out and solvent loss. The results show that, since the characteristics of solvent 1,1,1 - Trichloroethane are well suited to vapor degreasing requirements, by using proper procedures and maintenance, 1,1,1 - Trichloroethane emission during vapor degreasing can be controlled at levels well below the industrial hygiene standard established by OSHA for safe and healthful conditions.