19 resultados para Aggregate (Building materials) -- Catalonia -- Garrotxa
em Digital Commons at Florida International University
Resumo:
Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^
Resumo:
Natural disasters in Argentina and Chile played a significant role in the state-formation and nation-building process (1822-1939). This dissertation explores state and society responses to earthquakes by studying public and private relief efforts reconstruction plans, crime and disorder, religious interpretations of catastrophes, national and transnational cultures of disaster, science and technology, and popular politics. Although Argentina and Chile share a political border and geological boundary, the two countries provide contrasting examples of state formation. Most disaster relief and reconstruction efforts emanated from the centralized Chilean state in Santiago. In Argentina, provincial officials made the majority of decisions in a catastrophe’s aftermath. Patriotic citizens raised money and collected clothing for survivors that helped to weave divergent regions together into a nation. The shared experience of earthquakes in all regions of Chile created a national disaster culture. Similarly, common disaster experiences, reciprocal relief efforts, and aid commissions linked Chileans with Western Argentine societies and generated a transnational disaster culture. Political leaders viewed reconstruction as opportunities to implement their visions for the nation on the urban landscape. These rebuilding projects threatened existing social hierarchies and often failed to come to fruition. Rebuilding brought new technologies from Europe to the Southern Cone. New building materials and systems, however, had to be adapted to the South American economic and natural environment. In a catastrophe’s aftermath, newspapers projected images of disorder and the authorities feared lawlessness and social unrest. Judicial and criminal records, however, show that crime often decreased after a disaster. Finally, nineteenth-century earthquakes heightened antagonism and conflict between the Catholic Church and the state. Conservative clergy asserted that disasters were divine punishments for the state’s anti-clerical measures and later railed against scientific explanations of earthquakes.
Resumo:
Widespread damage to roofing materials (such as tiles and shingles) for low-rise buildings, even for weaker hurricanes, has raised concerns regarding design load provisions and construction practices. Currently the building codes used for designing low-rise building roofs are mainly based on testing results from building models which generally do not simulate the architectural features of roofing materials that may significantly influence the wind-induced pressures. Full-scale experimentation was conducted under high winds to investigate the effects of architectural details of high profile roof tiles and asphalt shingles on net pressures that are often responsible for damage to these roofing materials. Effects on the vulnerability of roofing materials were also studied. Different roof models with bare, tiled, and shingled roof decks were tested. Pressures acting on both top and bottom surfaces of the roofing materials were measured to understand their effects on the net uplift loading. The area-averaged peak pressure coefficients obtained from bare, tiled, and shingled roof decks were compared. In addition, a set of wind tunnel tests on a tiled roof deck model were conducted to verify the effects of tiles' cavity internal pressure. Both the full-scale and the wind tunnel test results showed that underside pressure of a roof tile could either aggravate or alleviate wind uplift on the tile based on its orientation on the roof with respect to the wind angle of attack. For shingles, the underside pressure could aggravate wind uplift if the shingle is located near the center of the roof deck. Bare deck modeling to estimate design wind uplift on shingled decks may be acceptable for most locations but not for field locations; it could underestimate the uplift on shingles by 30-60%. In addition, some initial quantification of the effects of roofing materials on wind uplift was performed by studying the wind uplift load ratio for tiled versus bare deck and shingled versus bare deck. Vulnerability curves, with and without considering the effects of tiles' cavity internal pressure, showed significant differences. Aerodynamic load provisions for low-rise buildings' roofs and their vulnerability can thus be more accurately evaluated by considering the effects of the roofing materials.