13 resultados para Aerodynamic Buffeting.

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detailed organic composition of atmospheric fine particles with an aerodynamic diameter smaller than or equal to 2.5 micrometers (PM2.5) is an integral part of the knowledge needed in order to fully characterize its sources and transformation in the environment. For the study presented here, samples were collected at 3-hour intervals. This high time resolution allows gaining unique insights on the influence of short- and long-range transport phenomena, and dynamic atmospheric processes. A specially designed sequential sampler was deployed at the 2002-2003 Baltimore PM-Supersite to collect PM2.5 samples at a 3-hourly resolution for extended periods of consecutive days, during both summer and winter seasons. Established solvent-extraction and GC-MS techniques were used to extract and analyze the organic compounds in 119 samples from each season. Over 100 individual compounds were quantified in each sample. For primary organics, averaging the diurnal ambient concentrations over the sampled periods revealed ambient patterns that relate to diurnal emission patterns of major source classes. Several short-term releases of pollutants from local sources were detected, and local meteorological data was used to pinpoint possible source regions. Biogenic secondary organic compounds were detected as well, and possible mechanisms of formation were evaluated. The relationships between the observed continuous variations of the concentrations of selected organic markers and both the on-site meteorological measurements conducted parallel to the PM2.5 sampling, and the synoptic patterns of weather and wind conditions were also examined. Several one-to-two days episodes were identified from the sequential variation of the concentration observed for specific marker compounds and markers ratios. The influence of the meteorological events on the concentrations of the organic compounds during selected episodes was discussed. It was observed that during the summer, under conditions of pervasive influence of air masses originated from the west/northwest, some organic species displayed characteristics consistent with the measured PM2.5 being strongly influenced by the aged nature of these long-traveling background parcels. During the winter, intrusions from more regional air masses originating from the south and the southwest were more important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread damage to roofing materials (such as tiles and shingles) for low-rise buildings, even for weaker hurricanes, has raised concerns regarding design load provisions and construction practices. Currently the building codes used for designing low-rise building roofs are mainly based on testing results from building models which generally do not simulate the architectural features of roofing materials that may significantly influence the wind-induced pressures. Full-scale experimentation was conducted under high winds to investigate the effects of architectural details of high profile roof tiles and asphalt shingles on net pressures that are often responsible for damage to these roofing materials. Effects on the vulnerability of roofing materials were also studied. Different roof models with bare, tiled, and shingled roof decks were tested. Pressures acting on both top and bottom surfaces of the roofing materials were measured to understand their effects on the net uplift loading. The area-averaged peak pressure coefficients obtained from bare, tiled, and shingled roof decks were compared. In addition, a set of wind tunnel tests on a tiled roof deck model were conducted to verify the effects of tiles' cavity internal pressure. Both the full-scale and the wind tunnel test results showed that underside pressure of a roof tile could either aggravate or alleviate wind uplift on the tile based on its orientation on the roof with respect to the wind angle of attack. For shingles, the underside pressure could aggravate wind uplift if the shingle is located near the center of the roof deck. Bare deck modeling to estimate design wind uplift on shingled decks may be acceptable for most locations but not for field locations; it could underestimate the uplift on shingles by 30-60%. In addition, some initial quantification of the effects of roofing materials on wind uplift was performed by studying the wind uplift load ratio for tiled versus bare deck and shingled versus bare deck. Vulnerability curves, with and without considering the effects of tiles' cavity internal pressure, showed significant differences. Aerodynamic load provisions for low-rise buildings' roofs and their vulnerability can thus be more accurately evaluated by considering the effects of the roofing materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detailed organic composition of atmospheric fine particles with an aerodynamic diameter smaller than or equal to 2.5 micrometers (PM 2.5) is an integral part of the knowledge needed in order to fully characterize its sources and transformation in the environment. For the study presented here, samples were collected at 3-hour intervals. This high time resolution allows gaining unique insights on the influence of short- and long-range transport phenomena, and dynamic atmospheric processes. A specially designed sequential sampler was deployed at the 2002-2003 Baltimore PM Supersite to collect PM2.5 samples at a 3-hourly resolution for extended periods of consecutive days, during both summer and winter seasons. Established solvent-extraction and GC-MS techniques were used to extract and analyze the organic compounds in 119 samples from each season. Over 100 individual compounds were quantified in each sample. For primary organics, averaging the diurnal ambient concentrations over the sampled periods revealed ambient patterns that relate to diurnal emission patterns of major source classes. Several short-term releases of pollutants from local sources were detected, and local meteorological data was used to pinpoint possible source regions. Biogenic secondary organic compounds were detected as well, and possible mechanisms of formation were evaluated. The relationships between the observed continuous variations of the concentrations of selected organic markers and both the on-site meteorological measurements conducted parallel to the PM2.5 sampling, and the synoptic patterns of weather and wind conditions were also examined. Several one-to-two days episodes were identified from the sequential variation of the concentration observed for specific marker compounds and markers ratios. The influence of the meteorological events on the concentrations of the organic compounds during selected episodes was discussed. It was observed that during the summer, under conditions of pervasive influence of air masses originated from the west/northwest, some organic species displayed characteristics consistent with the measured PM2.5 being strongly influenced by the aged nature of these long-traveling background parcels. During the winter, intrusions from more regional air masses originating from the south and the southwest were more important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.