6 resultados para Advanced virtual reality system

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research presents several components encompassing the scope of the objective of Data Partitioning and Replication Management in Distributed GIS Database. Modern Geographic Information Systems (GIS) databases are often large and complicated. Therefore data partitioning and replication management problems need to be addresses in development of an efficient and scalable solution. ^ Part of the research is to study the patterns of geographical raster data processing and to propose the algorithms to improve availability of such data. These algorithms and approaches are targeting granularity of geographic data objects as well as data partitioning in geographic databases to achieve high data availability and Quality of Service(QoS) considering distributed data delivery and processing. To achieve this goal a dynamic, real-time approach for mosaicking digital images of different temporal and spatial characteristics into tiles is proposed. This dynamic approach reuses digital images upon demand and generates mosaicked tiles only for the required region according to user's requirements such as resolution, temporal range, and target bands to reduce redundancy in storage and to utilize available computing and storage resources more efficiently. ^ Another part of the research pursued methods for efficient acquiring of GIS data from external heterogeneous databases and Web services as well as end-user GIS data delivery enhancements, automation and 3D virtual reality presentation. ^ There are vast numbers of computing, network, and storage resources idling or not fully utilized available on the Internet. Proposed "Crawling Distributed Operating System "(CDOS) approach employs such resources and creates benefits for the hosts that lend their CPU, network, and storage resources to be used in GIS database context. ^ The results of this dissertation demonstrate effective ways to develop a highly scalable GIS database. The approach developed in this dissertation has resulted in creation of TerraFly GIS database that is used by US government, researchers, and general public to facilitate Web access to remotely-sensed imagery and GIS vector information. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. ^ In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. ^ These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. ^ Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. ^ Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. ^ The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. ^ Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis was to explore the boundary between human and other created by virtual worlds in contemporary science fiction novels. After a close reading of the three novels: Surface Detail, Existence, and Lady of Mazes, and the application of contemporary literary theories, the boundary presented itself and led to the discovery of where the human becomes other. The human becomes other when it becomes lost to the virtual world and no longer exists or interacts with material reality. Each of the primary texts exhibits both virtual reality and humanity in different ways, and each is explored to find where humanity falls apart. Overall, when these theories are applied to real life there is no real way to avoid the potential for fully immersive virtual worlds, but there are ways to avoid their alienating effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.