4 resultados para Acute toxicity of copper

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: While research suggests whole body vibration (WBV) positively affects measures of neuromuscular performance in athletes, researchers have yet to address appropriate and effective vibration protocols. Objective: To identify the acute effects of continuous and intermittent WBV on muscular power and agility in recreationally active females. Design: We used a randomized 3-period cross-over design to observe the effects of 3 vibration protocols on muscular power and agility. Setting: Sports Science and Medicine Research Laboratory at Florida International University. Patients or Other Participants: Eleven recreationally active female volunteers (age=24.4±5.7y; ht=166.0±10.3cm; mass=59.7±14.3kg). Interventions: Each session, subjects stood on the Galileo WBV platform (Orthometrix, White Plains, NY) and received one of three randomly assigned vibration protocols. Our independent variable was vibration length (continuous, intermittent, or no vibration). Main Outcome Measures: An investigator blinded to the vibration protocol measured muscular power and agility. We measured muscular power with heights of squat and countermovement jumps. We measured agility with the Illinois Agility Test. Results: Continuous WBV significantly increased SJ height from 97.9±7.6cm to 98.5±7.5cm (P=0.019, β=0.71, η2 =0.07) but not CMJ height [99.1±7.4cm pretest and 99.4±7.4cm posttest (P=0.167, β=0.27)] or agility [19.2±2.1s pretest and 19.0±2.1s posttest (P=0.232, β=0.21)]. Intermittent WBV significantly enhanced SJ height from 97.6±7.7cm to 98.5±7.7cm (P=0.017, β=0.71, η2 =0.11) and agility 19.4±2.2s to 19.0±2.1s (P=0.001, β=0.98, η2=0.16), but did not effect CMJ height [98.7±7.7cm pretest and 99.3±7.3cm posttest (P=0.058, β=0.49)]. Conclusion: Continuous WBV increased squat jump height, while intermittent vibration enhanced agility and squat jump height. Future research should continue investigating the effect of various vibration protocols on athletic performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The matrices in which Multi Walled Carbon Nanotubes (MWCNTs) are incorporated to produce composites with improved electrical properties can be polymer, metal or metal oxide. Most composites containing CNTs are polymer based because of its flexibility in fabrication. Very few investigations have been focused on CNT-metal composites due to fabrication difficulties, such as achievement of homogeneous distribution of MWCNTs and poor interfacial bonding between MWCNTs and the metal matrix. In an effort to overcome poor interfacial bonding for the Cu - MWCNT composite, silver (Ag) and nickel (Ni) resinates have been incorporated in the ball milling stage. Composites of MWCNT (16, 12, and 8 Vol %) - Cu+Ag+Ni were pelleted at 20,000 psi (669.4 Mpa) and sintered at 950 °C. The electrical conductivity results measured by four probe meter showed that the conductivity decreases with increase in the porosity. Moreover from these results it can also be stated that an addition of optimum value of (12 Vol %) MWCNT leads to high electrical conductivity (9.26E+07 s-m"), which is 50% greater than the conductivity of Cu. It is anticipated that the conductivity can be increased substantially with hot isostatic pressing of the pellet.