4 resultados para Activity daily drinking
em Digital Commons at Florida International University
Resumo:
The purpose of this research was to explore the influence of physical activity on depressive symptomatology and adolescent alcohol use during an underexplored transition from middle school to high school. The study initiative is supported by the fact that research has shown a unique and simultaneous decrease in physical activity (CDC, 2010), increase in depressive symptomatology (SAMHSA, 2010) and increase in alcohol use (USDHHS, 2011) during middle adolescence. A risk and resilience framework was used in efforts to conceptualize how these variables may be inter-related. Data from waves I and II of the National Longitudinal Study of Adolescent Health (Add Health, Bearman et al., 1997; Udry, 1997) was used (N = 2,054; aged 13–15 years). The sample was ethnically and racially diverse (58.2% White, 24% African American, 11.7% Hispanic, and 6.1% other). Structural equation models were developed to test the potential influence physical activity has on adolescent alcohol use (e.g., frequency of alcohol use and binge alcohol use) and whether any of the relationship was mediated by depressive symptomatology or varied as a function of gender. Results demonstrated that there was a significant influence of structured physical activity (e.g., sports) on adolescent alcohol use. However, contrary to the proposed hypothesis, engaging in structured physical activity appeared to contribute to greater binge drinking among adolescents. Instead of demonstrating a protective feature, the findings suggest that engaging in structured physical activity places adolescents at risk for binge drinking. Furthermore, no significant relationships, positive or negative, were found for the influence of physical activity (structured and unstructured) on frequency of alcohol use. The findings regarding mediation revealed binge drinking as a mediator between physical activity (structured) and depressive symptomatology. These findings provide support for research, practice, and policy initiatives focused on developing a more comprehensive understanding of alcohol use drinking behaviors, physical activity involvement, and depressive symptomatology among adolescents, which this study demonstrates are all associated with one another. Results represent an initial step toward evaluating these relationships at a much younger age.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
It has been estimated that one in four adults have sedentary lifestyles. In addition there appears to be an increase in obesity across the life span. It is of great importance to the health of this nation to understand how to promote more active lifestyles through the identification of lifestyle behaviors of active individuals and potential predictors of physical activity (PA). Seven hundred and seventy-seven college students were surveyed to investigate the relationship between nutrition related variables (i.e., dietary restraint, nutrition knowledge, food choice and body weight concerns) and PA. In this study, over half of the students reported doing 30 minutes of moderate intensity PA daily. Vigorously active males and females chose low fat foods more often than the less active group. Exercisers and non-exercisers had similar nutrition knowledge. The results of this study suggest that students who are more active are more conscience about making healthier food choices.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.