15 resultados para Active surface states

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A description and model of the near-surface hydrothermal system at Casa Diablo, with its implications for the larger-scale hydrothermal system of Long Valley, California, is presented. The data include resistivity profiles with penetrations to three different depth ranges, and analyses of inorganic mercury concentrations in 144 soil samples taken over a 1.3 by 1.7 km area. Analyses of the data together with the mapping of active surface hydrothermal features (fumaroles, mudpots, etc.), has revealed that the relationship between the hydrothermal system, surface hydrothermal activity, and mercury anomalies is strongly controlled by faults and topography. There are, however, more subtle factors responsible for the location of many active and anomalous zones such as fractures, zones of high permeability, and interactions between hydrothermal and cooler groundwater. In addition, the near-surface location of the upwelling from the deep hydrothermal reservoir, which supplies the geothermal power plants at Casa Diablo and the numerous hot pools in the caldera with hydrothermal water, has been detected. The data indicate that after upwelling the hydrothermal water flows eastward at shallow depth for at least 2 km and probably continues another 10 km to the east, all the way to Lake Crowley.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the effect of sleep position on breathing patterns of normal full term infants during quiet and active behavioral sleep states. Tidal volume, percent contribution of rib cage to tidal volume, and respiration rate were measured via respiratory inductive plethysmography (RIP) and pneumotachograph (PNT) in ten infants sleeping in supine versus right side-lying. Data was collected immediately following two consecutive feedings. Paired t tests and ANOVA comparisons showed no significant differences between the two postures (p $<$.05) in mean tidal volume (supine, M = 19.16, right side, M = 22.45), percent contribution of rib cage to tidal volume (supine, M = 30.55, right side M = 33.20), or respiration rate (supine, M = 49.13, right side, M = 49.37) during quiet sleep. Comparisons also showed no significant differences between the two postures (p $<$.05) in mean tidal volume (supine, M = 18.89, right side, M = 20.12), percent contribution of rib cage to tidal volume (supine, M = 6.43, right side, M = 6.97) or respiration rate (supine, M = 62.18, right side, M = 61.04) during active sleep. Therefore, no differences were found in the three respiratory variables measured between the supine and right side-lying positions. These findings suggest that infants may be positioned in either sleep position without detriment to respiratory function. This information may benefit occupational therapists and other health professionals involved in the education of parents on infant positioning and their respective advantages. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Soviet Union's dissolution in December 1991 marks the end of the Cold War and the elimination of the United States' main rival for global political-economic leadership. For decades U.S. foreign policymakers had formulated policies aimed at containing the spread of Soviet communism and Moscow's interventionist policies in the Americas. They now assumed that Latin American leftist revolutionary upheavals could also be committed to history. This study explores how Congress takes an active role in U.S. foreign policymaking when dealing with revolutionary changes in Latin America. This study finds that despite Chávez's vitriolic statements and U.S. economic vulnerability due to its dependence on foreign oil sources, Congress today sees Chávez as a nuisance and not a threat to U.S. vital interests. Devoid of an extra-hemispheric, anti-American patron intent on challenging the United States for regional leadership, Chávez is seen by Congress largely as a threat to the stability of Venezuela's institutions and political-economic stability. Today both the U.S. executive and the legislative branches largely see Bolivarianism a distraction and not an existential threat. The research is based on an examination of Bolivarian Venezuela compared to revolutionary upheaval and governance in Nicaragua over the course of the twentieth century. This project is largely descriptive, qualitative in approach, but quantitative data are used when appropriate. To analyze both the U.S. executive and legislative branches' reaction to revolutionary change, Cole Blasier's theoretical propositions as developed in the Hovering Giant: U.S. Responses to Revolutionary Change in Latin America 1910-1985 are utilized. The present study highlights the fact that Blasier's propositions remain a relevant means for analyzing U.S. foreign policymaking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For all their efforts to avoid a nuclear North Korea, the Clinton and Bush administrations failed to achieve this goal, the most important policy objective of the United States in its relations with North Korea for decades, mainly because of inconsistencies in U.S. policy. This dissertation seeks to explain why both administrations ultimately failed to prevent North Korea from going nuclear. It finds the origins of this failure in the implementation of different U.S. policy options toward North Korea during the Clinton and Bush administrations. To explain the lack of policy consistency, the dissertation investigates how the relations between the executive and the legislative branches and, more specifically, different government types—unified government and divided government—have affected U.S. policy toward North Korea. It particularly emphasizes the role of Congress and partisan politics in the making of U.S. policy toward North Korea. This study finds that divided government played a pivotal role. Partisan politics are also central to the explanation: politics did not stop at the water’s edge. A divided U.S. government produced more status quo policies toward North Korea than a unified U.S. government, while a unified government produced more active policies than a divided government. Moreover, a unified government with a Republican President produced more aggressive policies toward North Korea, whereas a unified government with a Democratic President produced more conciliatory policies. This study concludes that the different government types and intensified partisan politics were the main causes of the inconsistencies in the United States’ North Korea policy that led to a nuclear North Korea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. ^ The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. ^ In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. ^ This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Soviet Union's dissolution in December 1991 marks the end of the Cold War and the elimination of the United States' main rival for global political-economic leadership. For decades U.S. foreign policymakers had formulated policies aimed at containing the spread of Soviet communism and Moscow's interventionist policies in the Americas. They now assumed that Latin American leftist revolutionary upheavals could also be committed to history. This study explores how Congress takes an active role in U.S. foreign policymaking when dealing with revolutionary changes in Latin America. This study finds that despite Chavez's vitriolic statements and U.S. economic vulnerability due to its dependence on foreign oil sources, Congress today sees Chavez as a nuisance and not a threat to U.S. vital interests. Devoid of an extra-hemispheric, anti-American patron intent on challenging the United States for regional leadership, Chavez is seen by Congress largely as a threat to the stability of Venezuela's institutions and political-economic stability. Today both the U.S. executive and the legislative branches largely see Bolivarianism a distraction and not an existential threat. The research is based on an examination of Bolivarian Venezuela compared to revolutionary upheaval and governance in Nicaragua over the course of the twentieth century. This project is largely descriptive, qualitative in approach, but quantitative data are used when appropriate. To analyze both the U.S. executive and legislative branches' reaction to revolutionary change, Cole Blasier's theoretical propositions as developed in the Hovering Giant: U.S. Responses to Revolutionary Change in Latin America 1910- 1985 are utilized. The present study highlights the fact that Blasier's propositions remain a relevant means for analyzing U.S. foreign policymaking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.