3 resultados para Active Management

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periphyton communities dominate primary production in much of the Florida Everglades wetland and therefore contribute to soil production, ecosystem metabolism and secondary production as well as the composition of dependent communities. Decades of research in the Everglades have supported research findings from other wetland types that cumulatively show that periphyton communities respond very rapidly to alterations in the two dominant drivers of wetland structure and function—hydrology and water quality. Hydrology controls periphyton productivity and composition by regulating moisture availability, substrate types available for colonization and supply of nutrients. Nutrients, particularly the limiting nutrient in this system, phosphorus (P), control levels of production and community composition. Because periphyton communities are well-established to be related to hydrology and water quality, an indicator was developed based on three periphyton attributes: abundance, quality (i.e., nutrient content) and community composition. This assessment tool offers a qualitative assessment of ecosystem response to potential changes in management activities at a time scale appropriate for active management. An example is provided of how the indicator can be used to assess the current water quality and hydrological conditions from high-density spatial surveys. Detected patterns of deterioration align with expectations derived from model predictions and known sources of nutrients and unnatural hydrologic regimes. If employed adaptively in ecosystem management, this tool can be used to both detect and react to change before the system has been irreparably altered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Globally, the current state of freshwater resource management is insufficient and impeding the chance at a sustainable future. Human interference within the natural hydrologic cycle is becoming dangerously irreversible and the need to redefine resource managerial approaches is imminent. This research involves the development of a coupled natural-human freshwater resource supply model using a System Dynamics approach. The model was applied to two case studies, Somalia, Africa and the Phoenix Active Management Area in Arizona, USA. It is suggested that System Dynamic modeling would be an invaluable tool for achieving sustainable freshwater resource management in individual watersheds. Through a series of thought experiments, a thorough understanding of the systems’ dynamic behaviors is obtainable for freshwater resource managers and policy-makers to examine various courses of action for alleviating freshwater supply concerns. This thesis reviews the model, its development and an analysis of several thought experiments applied to the case studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supervisory Control & Data Acquisition (SCADA) systems are used by many industries because of their ability to manage sensors and control external hardware. The problem with commercially available systems is that they are restricted to a local network of users that use proprietary software. There was no Internet development guide to give remote users out of the network, control and access to SCADA data and external hardware through simple user interfaces. To solve this problem a server/client paradigm was implemented to make SCADAs available via the Internet. Two methods were applied and studied: polling of a text file as a low-end technology solution and implementing a Transmission Control Protocol (TCP/IP) socket connection. Users were allowed to login to a website and control remotely a network of pumps and valves interfaced to a SCADA. This enabled them to sample the water quality of different reservoir wells. The results were based on real time performance, stability and ease of use of the remote interface and its programming. These indicated that the most feasible server to implement is the TCP/IP connection. For the user interface, Java applets and Active X controls provide the same real time access.