8 resultados para Acoustic telemetry

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bonefish (Albula spp.) support an economically important catch-and-release recreational fishery, as well as artisanal harvesting, in The Bahamas. Little is known about the large-scale movement patterns of bonefish, yet such information is essential for proper species conservation and management. ^ I used acoustic telemetry to determine large-scale movement patterns of bonefish around Andros, Bahamas, in conjunction with presumed spawning migrations. I conclude that bonefish travel long distances from shallow flats to pre-spawning aggregation sites in proximity to off-shore reef locations. Off-shore movement to deeper reef locations occurs around both new and full moons. This study has also confirmed anecdotal reports that the North Bight is an important spawning migration corridor for bonefish. ^ This information is critical for the protection of bonefish and identifies important habitats (e.g. migration corridors and pre-spawning aggregations) on Andros that warrant protection from coastal degradation or fishing pressures. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions will be an important step in fully understanding the ecological role of predators and how ecological roles may vary with environmental and anthropogenic changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bonefish (Albula spp.) support an economically important catch-and-release recreational fishery, as well as artisanal harvesting, in The Bahamas. Little is known about the large-scale movement patterns of bonefish, yet such information is essential for proper species conservation and management. I used acoustic telemetry to determine large-scale movement patterns of bonefish around Andros, Bahamas, in conjunction with presumed spawning migrations. I conclude that bonefish travel long distances from shallow flats to pre-spawning aggregation sites in proximity to off-shore reef locations. Off-shore movement to deeper reef locations occurs around both new and full moons. This study has also confirmed anecdotal reports that the North Bight is an important spawning migration corridor for bonefish. This information is critical for the protection of bonefish and identifies important habitats (e.g. migration corridors and pre-spawning aggregations) on Andros that warrant protection from coastal degradation or fishing pressures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Worldwide declines in populations of large elasmobranchs and the potential cascading effects on marine ecosystems have garnered considerable attention. Far less appreciated are the potential ecological impacts of changes in abundances of small to medium bodied elasmobranchs mesopredators. Crucial to elucidating the role of these elasmobranchs is an understanding of their habitat use and foraging ecology in pristine conditions. I investigated the trophic interactions and factors driving spatiotemporal variation in abundances of elasmobranch mesopredators in the relatively pristine ecosystem of Shark Bay, Australia. First, I describe the species composition and seasonal habitat use patterns of elasmobranch mesopredator on the sandflats of Shark Bay. Juvenile batoids dominated this diverse community and were extremely abundant in nearshore microhabitats during the warm season. Stomach content analysis and stable isotopic analysis revealed that there is a large degree of dietary overlap between common batoid species. Crustaceans, which tend to be found in seagrass habitats, dominated diets. Despite isotopic differences between many species, overlap in isotopic niche space was high and there was some degree of individual specialization. I then, investigated the importance of abiotic (temperature and water depth) and biotic (prey and predator abundance) factors in shaping batoid habitat use. Batoids were most abundant and tended to rest in shallow nearshore waters when temperatures were high. This pattern coincides with periods of large shark abundance suggesting batoids were seeking refuge from predators rather than selecting optimal temperatures. Finally, I used acoustic telemetry to examine batoid residency and diel use of the sandflats. Individual batoids were present on the sandflats during both the warm and cold seasons and throughout the diel cycle, suggesting lower sandflat densities during the cold season were a result of habitat shifts rather than migration out of Shark Bay. Combined, habitat use and dietary results suggest that batoids have the potential to seasonally impact sandflat dynamics through their presence, although foraging may be limited on the sandflats. Interestingly, my results suggest that elasmobranch mesopredators in pristine ecosystems probably are not regulated by food supply and their habitat use patterns and perhaps ecosystem impacts may be influenced by their predators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Body size is a fundamental structural characteristic of organisms, determining critical life history and physiological traits, and influencing population dynamics, community structure, and ecosystem function. For my dissertation, I focused on effects of body size on habitat use and diet of important coastal fish predators, as well as their influence on faunal communities in Bahamian wetlands. First, using acoustic telemetry and stable isotope analysis, I identified high variability in movement patterns and habitat use among individuals within a gray snapper (Lutjanus griseus) and schoolmaster snapper (L. apodus) population. This intrapopulation variation was not explained by body size, but by individual behavior in habitat use. Isotope values differed between individuals that moved further distances and individuals that stayed close to their home sites, suggesting movement differences were related to specific patterns of foraging behavior. Subsequently, while investigating diet of schoolmaster snapper over a two-year period using stomach content and stable isotope analyses, I also found intrapopulation diet variation, mostly explained by differences in size class, individual behavior and temporal variability. I then developed a hypothesis-testing framework examining intrapopulation niche variation between size classes using stable isotopes. This framework can serve as baseline to categorize taxonomic or functional groupings into specific niche shift scenarios, as well as to help elucidate underlying mechanisms causing niche shifts in certain size classes. Finally, I examined the effect of different-sized fish predators on epifaunal community structure in shallow seagrass beds using exclusion experiments at two spatial scales. Overall, I found that predator effects were rather weak, with predator size and spatial scale having no impact on the community. Yet, I also found some evidence of strong interactions on particular common snapper prey. As Bahamian wetlands are increasingly threatened by human activities (e.g., overexploitation, habitat degradation), an enhanced knowledge of the ecology of organisms inhabiting these systems is crucial for developing appropriate conservation and management strategies. My dissertation research contributed to this effort by providing critical information about the resource use of important Bahamian fish predators, as well as their effect on faunal seagrass communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Highly mobile top predators are hypothesized to spatially and/or temporally link disparate habitats through the combination of their movement and feeding patterns, but recent studies suggest that individual specialization in habitat use and feeding could keep habitats compartmentalized. 2.  We used passive acoustic telemetry and stable isotope analysis to investigate whether specialization in movement and feeding patterns of American alligators (Alligator mississippiensis) in an oligotrophic subtropical estuary created habitat linkages between marine and estuarine/freshwater food webs. 3.  Individual alligators adopted one of the three relatively distinct movement tactics that were linked to variation in diets. Fifty-six per cent of alligators regularly travelled from the upstream (freshwater/mid-estuary) areas into the downstream (marine-influenced) areas where salinities exceed those typically tolerated by alligators. Thirty-one per cent of the alligators made regular trips from the mid-estuarine habitat into the upstream habitat; 13% remained in the mid-estuary zone year-round. 4.  Stable isotopic analysis indicated that, unlike individuals remaining in the mid-estuary and upstream zones, alligators that used the downstream zone fed at least partially from marine food webs and likely moved to access higher prey abundance at the expense of salt stress. Therefore, ‘commuting’ alligators may link marine food webs with those of the estuary and marshes in the coastal Everglades and create an upstream vector for allochthonous nutrient inputs into the estuary. 5.  This study lends further support to the hypothesis that large-bodied highly mobile predators faced with trade-offs are likely to exhibit individual specialization leading to habitat linkages, rather than compartmentalization. However, the conditions under which this scenario occurs require further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of movements and habitat use is necessary to assess a species’ ecological role and is especially important for mesopredators because they provide the link between upper and lower trophic levels. Using acoustic telemetry, we examined coarse-scale diel and seasonal movements of elasmobranch mesopredators on a shallow sandflat in Shark Bay, Western Australia. Giant shovelnose rays (Glaucostegus typus) and reticulate whiprays (Himantura uarnak) were most often detected in nearshore microhabitats and were regularly detected throughout the day and year, although reticulate whiprays tended to frequent the monitored array over longer periods. Pink whiprays (H. fai) and cowtail stingrays (Pastinachus atrus) were also detected throughout the day, but were far less frequently detected. Overall, there was no apparent spatial or temporal partitioning of the sandflats, but residency to the area varied between species. In addition, ray presence throughout the year suggests that previously observed differences in seasonal abundance are likely because of seasonal changes in habitat use rather than large-scale migrations. Continuous use of the sandflats and limited movements within this ray community suggests that rays have the potential to be a structuring force on this system and that focusing on nearshore habitats is important for managing subtropical ray populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The frequency of extreme environmental events is predicted to increase in the future. Understanding the short- and long-term impacts of these extreme events on large-bodied predators will provide insight into the spatial and temporal scales at which acute environmental disturbances in top-down processes may persist within and across ecosystems. Here, we use long-term studies of movements and age structure of an estuarine top predator—juvenile bull sharks Carcharhinus leucas—to identify the effects of an extreme ‘cold snap’ from 2 to 13 January 2010 over short (weeks) to intermediate (months) time scales. Juvenile bull sharks are typically year-round residents of the Shark River Estuary until they reach 3 to 5 yr of age. However, acoustic telemetry revealed that almost all sharks either permanently left the system or died during the cold snap. For 116 d after the cold snap, no sharks were detected in the system with telemetry or captured during longline sampling. Once sharks returned, both the size structure and abundance of the individuals present in the nursery had changed considerably. During 2010, individual longlines were 70% less likely to capture any sharks, and catch rates on successful longlines were 40% lower than during 2006−2009. Also, all sharks caught after the cold snap were young-of-the-year or neonates, suggesting that the majority of sharks in the estuary were new recruits and several cohorts had been largely lost from the nursery. The longer-term impacts of this change in bull shark abundance to the trophic dynamics of the estuary and the importance of episodic disturbances to bull shark population dynamics will require continued monitoring, but are of considerable interest because of the ecological roles of bull sharks within coastal estuaries and oceans.