4 resultados para Accumulation area ratio

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Locard exchange principle proposes that a person can not enter or leave an area or come in contact with an object, without an exchange of materials. In the case of scent evidence, the suspect leaves his scent in the location of the crime scene itself or on objects found therein. Human scent evidence collected from a crime scene can be evaluated through the use of specially trained canines to determine an association between the evidence and a suspect. To date, there has been limited research as to the volatile organic compounds (VOCs) which comprise human odor and their usefulness in distinguishing among individuals. For the purposes of this research, human scent is defined as the most abundant volatile organic compounds present in the headspace above collected odor samples. ^ An instrumental method has been created for the analysis of the VOCs present in human scent, and has been utilized for the optimization of materials used for the collection and storage of human scent evidence. This research project has identified the volatile organic compounds present in the headspace above collected scent samples from different individuals and various regions of the body, with the primary focus involving the armpit area and the palms of the hands. Human scent from the armpit area and palms of an individual sampled over time shows lower variation in the relative peak area ratio of the common compounds present than what is seen across a population. A comparison of the compounds present in human odor for an individual over time, and across a population has been conducted and demonstrates that it is possible to instrumentally differentiate individuals based on the volatile organic compounds above collected odor samples. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is an invasive exotic species widely found in disturbed and native communities of Florida. This species has been shown to displace native species as well as alter community structure and function. The purpose of this study was to determine if the growth and gas exchange patterns of Schinus, under differing salinity conditions, were different from native species. Two native upland glycophytic species (Rapanea punctata and Randia aculeata) and two native mangrove species (Rhizophora mangle and Laguncularia racemosa) were compared with the exotic. Overall, the exotics morphologic changes and gas exchange patterns were most similar to R. mangle. Across treatments, increasing salinity decreased relative growth rate (RGR), leaf area ratio (LAR) and specific leaf area (SLA) but did not affect root/shoot ratios (R:S). Allocation patterns were however significantly different among species. The largest proportion of Schinus biomass was allocated to stems (47%), resulting in plants that were generally taller than the other species. Schinus also had the highest SLA and largest total leaf area of all species. This meant that the exotic, which was taller and had thinner leaves, was potentially able to maintain photosynthetic area comparable to native species. Schinus response patterns show that this exotic exhibits some physiological tolerance for saline conditions. Coupled with its biomass allocation patterns (more stem biomass and large area of thin leaves), the growth traits of this exotic potentially provide this species an advantage over native plants in terms of light acquisition in a brackish forested ecosystem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Andean montane forests are one of the most diverse ecosystems on Earth, but are also highly vulnerable to climate change. Therefore, the link between plant distribution and ecosystem productivity is a critical point to investigate in these ecosystems. Are the patterns in productivity observed in montane forest due to species turnover along the elevational gradients? Methodological constraints keep this question unanswered. Also, despite their importance, belowground biomass remains poorly quantified and understood. I measured two plant functional traits in seedlings, root:shoot ratio and specific leaf area, to identify different strategies in growth and biomass allocation across elevations. A tradeoff in specific leaf area with elevation was found in only one species, and no generalized directional change was detected with elevations for root:shoot ratio. Lack of information for the ontogeny of the measured plant traits could confounding the analysis.