7 resultados para Aanat transcription

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic interactions that underlie developmental processes such as cell differentiation and pattern formation are complex and difficult to elucidate. Neural Crest (NC) cells and their derivatives offer an optimal system in which to probe for these complex interactions as they acquire different cell fates and constitute a variety of structures. The transcription factors Sox10 and Pax3 as well as the transmembrane receptor Endothelin receptor b (Ednrb) are temporally and spatially co-expressed early in NC cells and mutations in these genes lead to similar hypopigmentation phenotypes due to a reduced number of NC-derived melanocyte precursors, the melanoblasts. The goal of this study was to establish whether Sox10 and Ednrb or Pax3 and Ednrb interact to promote normal murine melanocyte development. Crosses of Sox10 or Pax3 with Ednrb heterozygous mutants showed that the double heterozygous hypopigmentation phenotype was significantly more pronounced than phenotypes of single heterozygotes, implying that a synergistic interaction exists between Sox10 and Ednrb and Pax3 and Ednrb. This interaction was further explored by the attempt to rescue the Sox10 and Pax3 hypopigmentation phenotypes by the transgenic addition of Ednrb to melanoblasts. Pigmentation was completely restored in the Sox10 and partially restored in the Pax3 mutant mice. The comparison of the number of melanoblasts in transgenic and non-transgenic Sox10 mutant embryos showed that the transgenic rescue occurred as early as E11.5, a critical time for melanoblast population expansion. Cell survival assays indicated that the rescue was not due to an effect of the transgene on melanoblast survival. A novel phenotype arose when studying the interaction between Ednrb and Pax3. Newborns appeared normal but by 3.5 weeks of age, the affected pups were smaller than normal littermates and developed a dome-shaped head; some also developed thoracic kyphosis. Affected pups were dead by 4 weeks of age: 80% were Pax3Sp/+ and 75% were female. When compared to normal littermates, affected mice had brains with enlarged 4th ventricles and more glia while skeletal staining showed kyphosis, wider rib cages and pelvic differences. An epistatic interaction resulting from the mixing of genetic backgrounds that is exacerbated in the presence of Pax3 heterozygosity is suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordinated beating of the heart depends on a group ofhighly specialized cells that constitute the cardiac conduction system. Among these cells, the Purkinje fibers are responsible for propagation of the electric impulse into the ventricles. In early stages of development, Purkinje fibers and skeletal muscle fibers originate from similar but separate populations of myocytes. The role of the MyoD family of transcription factors in the development of the myotube is well known, but the role of these factors in the development of the Purkinje fiber is not. Members of the T-Box family of transcription.The coordinated beating of the heart depends on a group ofhighly specialized cells that constitute the cardiac conduction system. Among these cells, the Purkinje fibers are responsible for propagation of the electric impulse into the ventricles. In early stages of development, Purkinje fibers and skeletal muscle fibers originate from similar but separate populations of myocytes. The role of the MyoD family of transcription factors in the development of the myotube is well known, but the role of these factors in the development of the Purkinje fiber is not. Members of the T-Box family of transcription factors are also involved in the development of various cardiac tissues, including the conduction system but little is known about their role in the development of the Purkinje fiber. We explored the expression of members of the MyoD and T-Box families in the developing cardiac conduction system in vivo and in vitro. We showed that the expression of these factors changes as the myocyte differentiates into the Purkinje fiber. We also showed that NRG-1, a secreted protein involved in the development of the Purkinje fiber, features a dose-dependent response in the differentiation of cultured ventricular myocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. ^ Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. ^ At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic interactions that underlie developmental processes such as cell differentiation and pattern formation are complex and difficult to elucidate. Neural Crest (NC) cells and their derivatives offer an optimal system in which to probe for these complex interactions as they acquire different cell fates and constitute a variety of structures. The transcription factors Sox10 and Pax3 as well as the transmembrane receptor Endothelin receptor b (Ednrb) are temporally and spatially co-expressed early in NC cells and mutations in these genes lead to similar hypopigmentation phenotypes due to a reduced number of NC-derived melanocyte precursors, the melanoblasts. The goal of this study was to establish whether Sox10 and Ednrb or Pax3 and Ednrb interact to promote normal murine melanocyte development. Crosses of Sox10 or Pax3 with Ednrb heterozygous mutants showed that the double heterozygous hypopigmentation phenotype was significantly more pronounced than phenotypes of single heterozygotes, implying that a synergistic interaction exists between Sox10 and Ednrb and Pax3 and Ednrb. This interaction was further explored by the attempt to rescue the Sox10 and Pax3 hypopigmentation phenotypes by the transgenic addition of Ednrb to melanoblasts. Pigmentation was completely restored in the Sox10 and partially restored in the Pax3 mutant mice. The comparison of the number of melanoblasts in transgenic and non-transgenic Sox10 mutant embryos showed that the transgenic rescue occurred as early as E11.5, a critical time for melanoblast population expansion. Cell survival assays indicated that the rescue was not due to an effect of the transgene on melanoblast survival. A novel phenotype arose when studying the interaction between Ednrb and Pax3. Newborns appeared normal but by 3.5 weeks of age, the affected pups were smaller than normal littermates and developed a dome-shaped head; some also developed thoracic kyphosis. Affected pups were dead by 4 weeks of age: 80% were Pax3Sp/+ and 75% were female. When compared to normal littermates, affected mice had brains with enlarged 4th ventricles and more glia while skeletal staining showed kyphosis, wider rib cages and pelvic differences. An epistatic interaction resulting from the mixing of genetic backgrounds that is exacerbated in the presence of Pax3 heterozygosity is suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription by RNA polymerase can induce the formation of hypernegatively supercoiled DNA both in vivo and in vitro. This phenomenon has been explained by a “twin-supercoiled-domain” model of transcription where a positively supercoiled domain is generated ahead of the RNA polymerase and a negatively supercoiled domain behind it. In E. coli cells, transcription-induced topological change of chromosomal DNA is expected to actively remodel chromosomal structure and greatly influence DNA transactions such as transcription, DNA replication, and recombination. In this study, an IPTG-inducible, two-plasmid system was established to study transcription-coupled DNA supercoiling (TCDS) in E. coli topA strains. By performing topology assays, biological studies, and RT-PCR experiments, TCDS in E. coli topA strains was found to be dependent on promoter strength. Expression of a membrane-insertion protein was not needed for strong promoters, although co-transcriptional synthesis of a polypeptide may be required. More importantly, it was demonstrated that the expression of a membrane-insertion tet gene was not sufficient for the production of hypernegatively supercoiled DNA. These phenomenon can be explained by the “twin-supercoiled-domain” model of transcription where the friction force applied to E. coli RNA polymerase plays a critical role in the generation of hypernegatively supercoiled DNA. Additionally, in order to explore whether TCDS is able to greatly influence a coupled DNA transaction, such as activating a divergently-coupled promoter, an in vivo system was set up to study TCDS and its effects on the supercoiling-sensitive leu-500 promoter. The leu-500 mutation is a single A-to-G point mutation in the -10 region of the promoter controlling the leu operon, and the AT to GC mutation is expected to increase the energy barrier for the formation of a functional transcription open complex. Using luciferase assays and RT-PCR experiments, it was demonstrated that transient TCDS, “confined” within promoter regions, is responsible for activation of the coupled transcription initiation of the leu-500 promoter. Taken together, these results demonstrate that transcription is a major chromosomal remodeling force in E. coli cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.