9 resultados para ASSESSMENT MODELS
em Digital Commons at Florida International University
Resumo:
The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida.
Resumo:
Miami-Dade County implemented a series of water conservation programs, which included rebate/exchange incentives to encourage the use of high efficiency aerators (AR), showerheads (SH), toilets (HET) and clothes washers (HEW), to respond to the environmental sustainability issue in urban areas. This study first used panel data analysis of water consumption to evaluate the performance and actual water savings of individual programs. Integrated water demand model has also been developed for incorporating property’s physical characteristics into the water consumption profiles. Life cycle assessment (with emphasis on end-use stage in water system) of water intense appliances was conducted to determine the environmental impacts brought by each practice. Approximately 6 to 10 % of water has been saved in the first and second year of implementation of high efficiency appliances, and with continuing savings in the third and fourth years. Water savings (gallons per household per day) for water efficiency appliances were observed at 28 (11.1%) for SH, 34.7 (13.3%) for HET, and 39.7 (14.5%) for HEW. Furthermore, the estimated contributions of high efficiency appliances for reducing water demand in the integrated water demand model were between 5 and 19% (highest in the AR program). Results indicated that adoption of more than one type of water efficiency appliance could significantly reduce residential water demand. For the sustainable water management strategies, the appropriate water conservation rate was projected to be 1 to 2 million gallons per day (MGD) through 2030. With 2 MGD of water savings, the estimated per capita water use (GPCD) could be reduced from approximately 140 to 122 GPCD. Additional efforts are needed to reduce the water demand to US EPA’s “Water Sense” conservation levels of 70 GPCD by 2030. Life cycle assessment results showed that environmental impacts (water and energy demands and greenhouse gas emissions) from end-use and demand phases are most significant within the water system, particularly due to water heating (73% for clothes washer and 93% for showerhead). Estimations of optimal lifespan for appliances (8 to 21 years) implied that earlier replacement with efficiency models is encouraged in order to minimize the environmental impacts brought by current practice.
Resumo:
Urban growth models have been used for decades to forecast urban development in metropolitan areas. Since the 1990s cellular automata, with simple computational rules and an explicitly spatial architecture, have been heavily utilized in this endeavor. One such cellular-automata-based model, SLEUTH, has been successfully applied around the world to better understand and forecast not only urban growth but also other forms of land-use and land-cover change, but like other models must be fed important information about which particular lands in the modeled area are available for development. Some of these lands are in categories for the purpose of excluding urban growth that are difficult to quantify since their function is dictated by policy. One such category includes voluntary differential assessment programs, whereby farmers agree not to develop their lands in exchange for significant tax breaks. Since they are voluntary, today’s excluded lands may be available for development at some point in the future. Mapping the shifting mosaic of parcels that are enrolled in such programs allows this information to be used in modeling and forecasting. In this study, we added information about California’s Williamson Act into SLEUTH’s excluded layer for Tulare County. Assumptions about the voluntary differential assessments were used to create a sophisticated excluded layer that was fed into SLEUTH’s urban growth forecasting routine. The results demonstrate not only a successful execution of this method but also yielded high goodness-of-fit metrics for both the calibration of enrollment termination as well as the urban growth modeling itself.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor's ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell's electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.
Resumo:
We developed diatom-based prediction models of hydrology and periphyton abundance to inform assessment tools for a hydrologically managed wetland. Because hydrology is an important driver of ecosystem change, hydrologic alterations by restoration efforts could modify biological responses, such as periphyton characteristics. In karstic wetlands, diatoms are particularly important components of mat-forming calcareous periphyton assemblages that both respond and contribute to the structural organization and function of the periphyton matrix. We examined the distribution of diatoms across the Florida Everglades landscape and found hydroperiod and periphyton biovolume were strongly correlated with assemblage composition. We present species optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting the directionality of change in these important variables. Predictions of these variables were mapped to visualize landscape-scale spatial patterns in a dominant driver of change in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats of differing abundance can be used to infer past conditions and inform management decisions based on how assemblages are changing. This study captures diatom responses to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale bioassessment efforts in a large wetland.
Resumo:
Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor’s ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell’s electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.