2 resultados para ARSENIC REMOVAL
em Digital Commons at Florida International University
Resumo:
Ingestion of arsenic from contaminated water is a serious problem and affects the health of more than 100 million people worldwide. Traditional water purification technologies are generally not effective or cost prohibitive for the removal of arsenic to acceptable levels (≤10 ppb). Current multi-step arsenic removal processes involve oxidation, precipitation and/or adsorption. Advanced Oxidation Technologies (AOTs) may be attractive alternatives to existing treatments. The reactions of inorganic and organic arsenic species with reactive oxygen species were studied to develop a fundamental mechanistic understanding of these reactions, which is critical in identifying an effective and economical technology for treatment of arsenic contaminated water. ^ Detailed studies on the conversion of arsenite in aqueous media by ultrasonic irradiation and TiO2 photocatalytic oxidation (PCO) were conducted, focusing on the roles of hydroxyl radical and superoxide anion radical formed during the irradiation. ·OH plays the key role, while O2 -· has little or no role in the conversion of arsenite during ultrasonic irradiation. The reaction of O2-· does not contribute in the rapid conversion of As(III) when compared to the reaction of As(III) with ·OH radical during TiO2 PCO. Monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are readily degraded upon TiO2 PCO. DMA is oxidized to MMA as the intermediate and arsenate as the final product. For dilute solutions, TiO2 also may be applicable as an adsorbent for direct removal of arsenic species, namely As(III), As(V), MMA and DMA, all of which are strongly adsorbed, thus eliminating the need for a multi-step treatment process. ^ Phenylarsonic acid (PA) was subjected to gamma radiolysis under hydroxyl radical generating conditions, which showed rapid degradation of PA. Product analysis and computational calculation both indicate the arsenate group is an ortho, para director. Our results indicate · OH radical mediated processes should be effective for the remediation of phenyl substituted arsonic acids. ^ While hydroxyl radical generating methods, specifically AOTs, appear to be promising methods for the treatment of a variety of arsenic compounds in aqueous media, pilot studies and careful economic analyses will be required to establish the feasibility of AOTs applications in the removal of arsenic. ^
Resumo:
Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.