2 resultados para 979

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A challenge facing nutrition care providers and the Chinese community is how to improve and maintain dietary adequacy (DA) and quality of life (QoL) in older Chinese Americans. Little is known about the factors contributing to DA and the relationships between DA and QoL among community-dwelling older Chinese adults in South Florida. A DA model and a QoL model were hypothesized. ^ Structured interviews with 100 Chinese Floridians, ages ≥60, provided data to test the hypothesized models, using structured equation modeling. Participants (mean age ± SD = 70.9 + 6.8 years) included 59% females, 98% foreign-born, 23% non-English speakers, and 68% residents of Florida for 20 years or more. The findings supported the study hypotheses: an excellent goodness-of-fit of the DA model (χ2/DF (7) = .286; CFI = 1.000; TLI = 1.704; NFI = .934; RMSEA < .001, 90% CI < .0001 to < .001; SRMR = .033; AIC = 30.000; and BIC = 66.472) and an excellent goodness-of-fit of the QoL model (χ2/DF (6) = .811; CFI = 1.000; TLI = 1.013; NFI = .979; RMSEA < .001, 90% CI < .001 to .116; SRMR = .0429; AIC = 34.869; and BIC = 73.946). ^ The DA model consisted of a structure of four indicators (i.e. Body Mass Index, food practices, diet satisfaction, and appetite) and one intervening variable (i.e. combining nutrient adequacy with nutritional risk). BMI was the strongest, most reliable indicator of DA with the highest predictability coefficient (.63) and the ability to differentiate between participants with different DA levels. The QoL model consisted of a two-dimensional construct with one indicator (i.e. physical function) and one intervening variable (i.e. combining loneliness with social resources, depression, social function, and mental health). Physical function had the strongest predictability coefficient (.89), while other indicators contributed to QoL indirectly. When integrating the DA model to the QoL model, DA appears to influence QoL via indirect pathways. ^ It is necessary to include a precise measure of BMI as the basis for assessing DA in this population. Important goals of dietary interventions should be improving physical function and alleviating social and emotional isolation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.