2 resultados para 670705 Plastic products (incl. construction materials)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the diversity of woody plants at 15 forested sites in the Tansa Valley of Thane District, in Maharashtra, India. The fewest species (11) were seen at a degraded mangrove site near the river mouth, and the greatest number (150) in the rich semi-evergreen forest on Tungar Hill. For all sites there were 141 tree, 25 shrub and 15 liana species, a total of 181 species. Excluding the mangrove site, which had no species in common with the other 14 sites, we analyzed the species distributions in detail. 2 These sites ranged in area from 4 to 30 km each, had woody floras of 89 6 6 species, and varied in intensity of human impact. Despite a history of exploitation and substantial reduction in biomass from firewood collecting, set fires and illicit tree felling, considerable plant diversity remains in the area.We found a modest increase in species richness in transects away from two villages. We observed the exploitation of the forest by the principal users, primarily of the Warli Tribe. They exploited a wide variety of forest resources (92 species), for medicines, foods, construction materials, household goods, manure and other purposes. They collected 15 items for sale. By far the single most important item collected was firewood, which dramatically reduced forest biomass within 2 km of villages. The species distributions in these forest remnants are strongly nested, mostly due to varying degrees of disturbance at individual sites. The high species diversity on Tungar Hill is most likely a relict of the earlier character of forests throughout much of the valley. It merits the highest priorities for preservation, as a refuge for Western Ghat species at the northern limits of their distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^