4 resultados para 300505 Anatomy and Physiology
em Digital Commons at Florida International University
Resumo:
Black band disease of corals consists of a microbial community dominated by the cyanobacteriurn Phormidium corallyticum. The disease primarily affects reef-framework coral species, Active black band disease continually opens up new substrate in reef environments by destroying coral tissue as the disease line advances across the surface of infected colonies. A field study was carried out to determine the abundance and distribution of black band disease on the reef building corals in the Florida Keys. During July of 1992 and 1993, up to 0.72% of coral colonies were infected with black band disease. Analysis of the distribution showed that the disease was clumped. Seasonal patters varied, with some coral colonies infected year round, others exhibiting reinfection from summer 1992 to summer 1993, and some colonies infected for one year only. Statistical analysis of black band disease incidence in relation to various environmental parameters revealed that black band disease was associated with relatively shallow water depths, higher temperatures, elevated nitrite levels, and decreased ortho-phosphate levels. Additional field studies determined recovery of scleractinian coral colonies damaged or killed through the activities of black band disease over a five-year period. These studies determined if the newly exposed substrate was recolonized through scleractinian recruitment, if there was overgrowth of the damaged areas by the formerly diseased colony, or if coral tissue destruction continued after the cessation of black band disease activity. Tissue loss continued on all coral colonies with only one colony exhibiting new tissue growth. The majority of recolonization was by non-reef-framework corals and octocorallians, limited recruitment by framework species was observed. Physiological studies of P. corallyticum were carried out to investigate the photosynthetic capacity of this cyanobacterium, and to determine if this species has the ability to fix dinitrogen. The results of this research demonstrated that P. corallyticum reaches maximum photosynthetic rates at very low light intensities (27.9 μE/m/sec), and that P. corallyticum is able to carry out oxygenic photosynthesis in the presence of sulfide, an ability that is uncommon in prokaryotic organisms. ^
Resumo:
Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^
Resumo:
The purpose of this study was to demonstrate if the academic assistance program Supplemental Instruction (SI) facilitates the acquisition of effective study behaviors through strategies that transcend simple double-exposure to the course material. Its advocates claim it increases academic achievement using learner-centered knowledge and acquisition of effective study behaviors. SI sessions are specifically related to particular courses that students are taking. Sessions are facilitated by the SI leader who has taken the subject matter course in the past. Students review the content of the previous subject matter class using collaborative learning strategies coordinated by a SI leader. In addition, the SI leader models appropriate study behaviors in his or her interactions with the students. ^ An instructor at a large Florida community college who taught five classes of an Anatomy & Physiology I course (traditionally supported by SI) was identified. Two of the classes were randomly selected to participate in SI activities, and two classes were random chosen to participate in alternate, computer-based activities that dealt with the course content, but did not include work in developing students' study behaviors. These treatments were carried out over the course of an entire semester. Participation was mandatory. ^ Data were collected on two variables. Academic achievement in anatomy and physiology content was measured both pre- and post-treatment using an instructor developed examination. Student study behaviors were measured using pre- and post-treatment administration of the Study Behavior Inventory, a valid and reliable instrument that provides scores on three categories of study behaviors: (a) Academic self-efficacy, (b) Preparation for routine academic tasks, and (c) Preparation for long range academic tasks. Measures obtained at the end of the semester of treatment revealed no significant differences between the SI and alternative treatment groups in post-treatment achievement test score and the post-treatment scores on the three study behaviors categories when adjusted for pre-treatment scores. ^ These results suggest that the development of appropriate study behaviors requires more time than SI, as it is now implemented, can provide. In addition, results indicate that improved academic achievement may be attained through any number of means that include repeated exposure to course material. ^
Resumo:
Pediatric musculoskeletal trauma accounts for most childhood injuries. The anatomy and physiology of the pediatric skeleton is unique as is its response to trauma. The pediatric skeleton has periods of rapid growth; therefore the effect of trauma to the musculoskeletal system may have significant long-term complications.