8 resultados para 1259
em Digital Commons at Florida International University
Resumo:
Female secondary principals not only have to deal with internal and external pressures to lead successfully but are scrutinized because of their gender (Shakeshaft, 1993; Skrla & Young, 2003; Thurman, 2004). The purpose of this study was to investigate how female secondary principals from one southwestern state teased out complex views of leadership, gender, and race.
Resumo:
An electronic database support system for strategic planning activities can be built by providing conceptual and system specific information. The design and development of this type of system center around the information needs of strategy planners. Data that supply information on the organization's internal and external environments must be originated, evaluated, collected, organized, managed, and analyzed. Strategy planners may use the resulting information to improve their decision making.
Resumo:
Charles Perry standing next to the Florida International University sign. Charles Edward Perry (Chuck), 1937-1999, was the founding president of Florida International University in Miami, Florida. He grew up in Logan County, West Virginia and received his bachelor's and masters's degrees from Bowling Green State University. He married Betty Laird in 1960. In 1969, at the age of 32, Perry was the youngest president of any university in the nation. The name of the university reflects Perry’s desire for a title that would not limit the scope of the institution and would support his vision of having close ties to Latin America. Perry and a founding corps opened FIU to 5,667 students in 1972 with only one large building housing six different schools. Perry left the office of President of FIU in 1976 when the student body had grown to 10,000 students and the university had six buildings, offered 134 different degrees and was fully accredited. Charles Perry died on August 30, 1999 at his home in Rockwall, Texas. He is buried on the FIU campus in front of the Graham Center entrance.
Resumo:
Vol. 21, Issue 37, 8 pages
Resumo:
The purpose of this qualitative study was to gain an understanding of what participation in a first year residential learning community meant to students 2-3 years after their involvement in the program. Various theories including environmental, student involvement, psychosocial and intellectual, were used as a framework for this case study. Each of the ten participants was a junior or senior level student at the time of the study, but had previously participated in a first year residential learning community at Florida International University. The researcher held two semi-structured interviews with each participant, and collected data sheets from each. The narrative data produced from the interviews were transcribed, coded and analyzed to gain insights into the experiences and perspectives of the participants. Member checking was used after the interview process. A peer reviewer offered feedback during the data analysis. The resulting data was coded into categories, with a final selection of four themes and 15 sub-themes, which captured the essence of the participants' experiences. The four major themes included: (a) community, (b) involvement, (c) identity, and (d) academics. The community theme is used to describe how students perceived the environment to be. The involvement theme is used to describe the students' participation in campus life and their interaction with other members of the university community. The identity theme is used to describe the students' process of development, and the personal growth they underwent as a result of their experiences. The academics theme refers to the intellectual development of students and their interaction around academic issues. The results of this study showed that the participants valued greatly their involvement in the First Year Residents Succeeding Together program (FYRST) and can articulate how it helped them succeed as students. In describing their experience, they most recall the sense of community that existed, the personal growth they experienced, the academic development process they went through, and their involvement, both with other people and with activities in their community. Recommendations are provided for practice and research, including several related to enhancing the academic culture, integrating faculty, utilizing peer influence and providing further opportunities to create a seamless learning environment.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1259/thumbnail.jpg
Resumo:
Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.