5 resultados para 091205 Functional Materials

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel trileaflet polymer valve is a composite design of a biostable polymer poly(styrene-isobutylene-styrene) (SIBS) with a reinforcement polyethylene terephthalate (PET) fabric. Surface roughness and hydrophilicity vary with fabrication methods and influence leaflet biocompatibility. The purpose of this study was to investigate the biocompatibility of this composite material using both small animal (nonfunctional mode) and large animal (functional mode) models. Composite samples were manufactured using dip coating and solvent casting with different coating thickness (251μm and 50μm). Sample's surface was characterized through qualitative SEM observation and quantitative surface roughness analysis. A novel rat abdominal aorta model was developed to test the composite samples in a similar pulsatile flow condition as its intended use. The sample's tissue response was characterized by histological examination. Among the samples tested, the 25μm solvent-cast sample exhibited the smoothest surface and best biocompatibility in terms of tissue capsulation thickness, and was chosen as the method for fabrication of the SIBS valve. Phosphocholine was used to create a hydrophilic surface on selected composite samples, which resulted in improved blood compatibility. Four SIBS valves (two with phosphocholine modification) were implanted into sheep. Echocardiography, blood chemistry, and system pathology were conducted to evaluate the valve's performance and biocompatibility. No adverse response was identified following implantation. The average survival time was 76 days, and one sheep with the phosphocholine modified valve passed the FDA minimum requirement of 140 days with approximately 20 million cycles of valve activity. The explanted valves were observed under the aid of a dissection microscope, and evaluated via histology, SEM and X-ray. Surface cracks and calcified tissue deposition were found on the leaflets. In conclusion, we demonstrated the applicability of using a new rat abdominal aorta model for biocompatibility assessment of polymeric materials. A smooth and complete coating surface is essential for the biocompatibility of PET/SIBS composite, and surface modification using phosphocholine improves blood compatibility. Extrinsic calcification was identified on the leaflets and was associated with regions of surface cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.