3 resultados para 0804 Data Format
em Digital Commons at Florida International University
Resumo:
Lake Analyzer is a numerical code coupled with supporting visualization tools for determining indices of mixing and stratification that are critical to the biogeochemical cycles of lakes and reservoirs. Stability indices, including Lake Number, Wedderburn Number, Schmidt Stability, and thermocline depth are calculated according to established literature definitions and returned to the user in a time series format. The program was created for the analysis of high-frequency data collected from instrumented lake buoys, in support of the emerging field of aquatic sensor network science. Available outputs for the Lake Analyzer program are: water temperature (error-checked and/or down-sampled), wind speed (error-checked and/or down-sampled), metalimnion extent (top and bottom), thermocline depth, friction velocity, Lake Number, Wedderburn Number, Schmidt Stability, mode-1 vertical seiche period, and Brunt-Väisälä buoyancy frequency. Secondary outputs for several of these indices delineate the parent thermocline depth (seasonal thermocline) from the shallower secondary or diurnal thermocline. Lake Analyzer provides a program suite and best practices for the comparison of mixing and stratification indices in lakes across gradients of climate, hydro-physiography, and time, and enables a more detailed understanding of the resulting biogeochemical transformations at different spatial and temporal scales.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.