8 resultados para 060807 Animal Structure and Function

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the development of leaf characters in two Southeast Asian dipterocarp forest trees under different photosynthetic photon flux densities (PFD) and spectral qualities (red to far-red, R:FR). The two species, Hopea helferi and H. odorata, are taxonomically closely related but differ in their ecological requirements; H. helferi is more drought tolerant and H. odorata more shade tolerant. Seedlings were grown in replicated shadehouse treatments of differing PFD and R:FR. We measured or calculated (1) leaf and tissue thicknesses; (2) mesophyll parenchyma, air space, and lignified tissue volumes; (3) mesophyll air volumes (Vmes/Asurf) and surfaces (Ames/Asurf); (4) palisade cell length and width; (5) chlorophyll/cm2 and a/ b; (6) leaf absorption; and (7) attenuance/absorbance at 652 and 550 nm. These characters varied in response to light conditions in both taxa. Characters were predominantly affected by PFD, and R:FR slightly influenced many characters. Leaf characters of H. odorata were more plastic in response to treatment conditions. Characters were correlated with each other in a complex fashion. Variation in leaf anatomy is most likely a consequence of increasing leaf thickness in both taxa, which may increase mechanical strength and defense against herbivory in more exposed environments. Variation in leaf optical properties was most likely affected by pigment photo-bleaching in treatments of more intense PFD and was not correlated with Amax. The greater plasticity of leaf responses in H. odorata helps explain the acclimation over the range of light conditions encountered by this shade-tolerant taxon. The dense layer of scales on the leaf undersurface and other anatomical characters in H. helferi reduced gas exchange and growth in this drought-tolerant tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An oligotrophic phosphorus (P) limited seagrass ecosystem in Florida Bay was experimentally fertilized in a unique way. Perches were installed to encourage seabirds to roost and deliver an external source of nutrients via defecation. Two treatments were examined: (1) a chronic 23-year fertilization and (2) an earlier 28-month fertilization that was discontinued when the chronic treatment was initiated. Because of the low mobility of P in carbonate sediments, we hypothesized long-term changes to ecosystem structure and function in both treatments. Structural changes in the chronic treatment included a shift in the dominant seagrass species from Thalassia testudinum to Halodule wrightii, large increases in epiphytic biomass and sediment chlorophyll-a, and a decline in species richness. Functional changes included increased benthic metabolism and quantum efficiency. Initial changes in the 28-month fertilization were similar, but after 23 years of nutrient depuration T. testudinum has reestablished itself as the dominant species. However, P remains elevated in the sediment and H. wrightii has maintained a presence. Functionally the discontinued treatment remains altered. Biomass exceeds that in the chronic treatment and indices of productivity, elevated relative to control, are not different from the chronic fertilization. Cessation of nutrient loading has resulted in a superficial return to the pre-disturbance character of the community, but due to the nature of P cycles functional changes persist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iridescent colour, caused by physical effects (thin-film interference, diffraction and Tyndall scattering), is relatively common in animals but exceedingly rare among plants1. Some benthic marine algae produce blue to violet iridescence2,3, and the upper leaf surfaces of a few vascular plants from the shady environments of humid tropical forests are iridescent blue4–6. Blue fruit colour has been assumed to be caused by anthocyanins7. A survey of such fruits (26 species in 18 genera) in Costa Rica, India, Florida and Malaysia, showed this to be the case, except for the iridescent colour in fruits of Elaeocarpus angustifolius Blume (Elaeocarpaceae). There I show that the colour is caused by a remarkable structure in the epidermis, and provide evidence for its selective advantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most fundamental and challenging function of government is the effective and efficient delivery of services to local taxpayers and businesses. Counties, once known as the “dark continent” of American government, have recently become a major player in the provision of services. Population growth and suburbanization have increased service demands while the counties' role as service provider to incorporated residents has also expanded due to additional federal and state mandates. County governments are under unprecedented pressure and scrutiny to meet citizens' and elected officials' demands for high quality, and equitable delivery of services at the lowest possible cost while contending with anti-tax sentiments, greatly decreased state and federal support, and exceptionally costly and complex health and public safety problems. ^ This study tested the reform government theory proposition that reformed structures of county government positively correlate with efficient service delivery. A county government reformed index was developed for this dissertation comprised of form of government, home-rule status, method of election, number of government jurisdictions, and number of elected officials. The county government reform index and a measure of relative structural fragmentation were used to assess their impact on two measures of service output: mean county road pavement condition and county road maintenance expenditures. The study's multi-level design triangulated results from different data sources and methods of analysis. Data were collected from semi-structured interviews of county officials, secondary archival sources, and a survey of 544 elected and appointed officials from Florida's 67 counties. The results of the three sources of data converged in finding that reformed Florida counties are more likely than unreformed counties to provide better road service and to spend less on road expenditures. The same results were found for unfragmented Florida counties. Because both the county government reform index and the fragmentation variables were specified acknowledging the reform theory as well as elements from the public-choice model, the results help explain contradicting findings in the urban service research. ^ Therefore, as suggested by the corroborated findings of this dissertation, reformed as well as unfragmented counties are better providers of road maintenance service and do so in a less costly manner. These findings hold although the variables were specified to capture theoretical arguments from the consolidated as well as the public-choice theories suggesting a way to advance the debate from the consolidated-fragmented dichotomy of urban governance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroperiod, or the distribution, duration and timing of flooding affects both plant and animal distributions. The Florida Everglades is currently undergoing restoration that will result in altered hydroperiods. This study was conducted in Everglades National Park to document the variability in periphyton community structure and function between long and short hydroperiod Everglades marshes. Periphyton is an important primary producer and important food resource in the Everglades. Periphyton is also involved in marl soil formation and nutrient cycling. Although periphyton is an important component of the Everglades landscape, little is known about periphyton structural-functional variation between hydroperiods. ^ For this study diatoms, as well as fresh algae slides of diatoms, cyanobacteria and green algae were identified and enumerated. Short verse long hydroperiod soil and water column nutrients were compared. Short and long hydroperiod algal periphyton mat productivity rates were compared using BOD incubations. Experimental manipulations were performed to determine the effects of desiccation duration and rewetting on periphyton productivity, community structure, and nutrient flux. ^ Variation in periphyton community structure was significantly greater between hydroperiods than within hydroperiods. Short and long hydroperiod periphyton mats have the same algal species, it is the distribution and abundance that varies between hydroperiods. Long hydroperiod mats have greater diatom abundance while short hydroperiod mats have greater relative filamentous cyanobacterial abundance. ^ Long hydroperiod mats had greater net primary production (npp) than short hydroperiod mats. Short hydroperiod mats respond to rewetting more rapidly than do long hydroperiod mats. Dry short hydroperiod mats became net primary producers within 24 hours of rehydration. Increasing desiccation duration led to greater cyanobacterial abundance in long hydroperiod mats and decreased diatom abundance in both long and short hydroperiod mats. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gra­dients of resources (such as water and nutrient limitation) and regulators (such as salinity and sul­fide toxicity). We tested the variability of man­grove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients repre­sented by limited phosphorus concentrations com­bined with high sulfide concentrations, respec­tively. Foliar d13C ratios exhibited a range from ­ 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differ­ences in dissolved inorganic nitrogen, soluble reac­tive phosphorus, and sulfide porewater concentra­tions. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salin­ity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a con­founding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape fac­tors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should ac­count for watershed-specific organic inputs.