94 resultados para Ground water resource management
Resumo:
Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.
Resumo:
Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).
Resumo:
Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.