80 resultados para Digital Human Modelling (DHM)
Resumo:
In certain European countries and the United States of America, canines have been successfully used in human scent identification. There is however, limited scientific knowledge on the composition of human scent and the detection mechanism that produces an alert from canines. This lack of information has resulted in successful legal challenges to human scent evidence in the courts of law. The main objective of this research was to utilize science to validate the current practices of using human scent evidence in criminal cases. The goals of this study were to utilize Headspace Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (HS-SPME-GC/MS) to determine the optimum collection and storage conditions for human scent samples, to investigate whether the amount of DNA deposited upon contact with an object affects the alerts produced by human scent identification canines, and to create a prototype pseudo human scent which could be used for training purposes. Hand odor samples which were collected on different sorbent materials and exposed to various environmental conditions showed that human scent samples should be stored without prolonged exposure to UVA/UVB light to allow minimal changes to the overall scent profile. Various methods of collecting human scent from objects were also investigated and it was determined that passive collection methods yields ten times more VOCs by mass than active collection methods. Through the use of polymerase chain reaction (PCR) no correlation was found between the amount of DNA that was deposited upon contact with an object and the alerts that were produced by human scent identification canines. Preliminary studies conducted to create a prototype pseudo human scent showed that it is possible to produce fractions of a human scent sample which can be presented to the canines to determine whether specific fractions or the entire sample is needed to produce alerts by the human scent identification canines.
Resumo:
Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.
Resumo:
This phenomenological study explored how HR professionals who identified themselves as facilitators of strategic HRD (SHRD) perceived the experience of being an organizational agent-downsizing survivor. Criterion and snowball sampling were used to recruit 15 participants for this study. A semi-structured interview guide was used to interview participants. Creswell’s (2007) simplified version of Moustakas’s (1994) Modification of the Stevick-Colaizzi-Keen Method of Analysis of Phenomenological Data was used to analyze the data. Four main themes and corresponding sub-themes emerged from an inductive data analysis. The four main themes were a) the emotionality of downsizing, b) feeling responsible, c) choice and control, and d) possibilities for growth. Participants perceived downsizing as an emotional organizational change event that required them to manage their own emotions while helping others do the same. They performed their roles within an organizational atmosphere that was perceived as chaotic and filled with apprehension, shock, and a sense of ongoing loss, sadness and grieving. They sometimes experienced guilt and doubt and felt deceptive for having to keep secrets from others when planning for downsizing. Participants felt a strong sense of responsibility to protect employees emotionally, balance employee and organizational interests, and try to ensure the best outcomes for both. Often being there for others meant that they put on their games faces and took care of themselves last. Participants spoke of the importance of choosing one’s attitude, being proactive rather than reactive, and finding ways to regain control in the midst of organizational crisis. They also perceived that although downsizing was emotionally difficult to go through that it provided possibilities for self, employee, and organizational growth.
Resumo:
Aquatic ecosystems exhibit different vulnerabilities to anthropogenic disturbances. I examined this problem in the Upper Napo River Basin (UNRB), Ecuador. I ranked from 1 to 5 aquatic ecosystem uniqueness, health and threats. I stratified the basin into five Ecological Drainage Units (EDU), 48 Aquatic Ecological Systems (AES), and 203 macrohabitats. I found main threats (habitat conversion/degradation, land development, mining, oil industries, and water diversion) cover 54% of the UNRB, but have different scores and extents in each EDU. I assessed the health of 111 AESs, under three land use treatments, by analyzing the streamside zone, physical forms, water quality, aquatic life, and hydrology. Overall, health of AESs varied from 5 to 2.58, with 5 being the highest level of health. Threats and health of AESs were inversely related (F=34.119, P
Resumo:
Age-related macular degeneration (AMD) is the leading cause of blindness inAmerica. The fact that AMD wreaks most of the damage in the center of the retina raises the question of whether light, integrated over long periods, is more concentrated in the macula. A method, based on eye-tracking, was developed to measure the distribution of light in the retina under natural viewing conditions. The hypothesis was that integrated over time, retinal illumination peaked in the macula. Additionally a possible relationship between age and retinal illumination was investigated. The eye tracker superimposed the subject’s gaze position on a video recorded by a scene camera. Five informed subjects were employed in feasibility tests, and 58 naïve subjects participated in 5 phases. In phase 1 the subjects viewed a gray-scale image. In phase 2, they observed a sequence of photographic images. In phase 3 they viewed a video. In phase 4, they worked on a computer; in phase 5, the subjects walked around freely. The informed subjects were instructed to gaze at bright objects in the field of view and then at dark objects. Naïve subjects were allowed to gaze freely for all phases. Using the subject’s gaze coordinates, and the video provided by the scene camera, the cumulative light distribution on the retina was calculated for ~15° around the fovea. As expected for control subjects, cumulative retinal light distributions peaked and dipped in the fovea when they gazed at bright or dark objects respectively. The light distribution maps obtained from the naïve subjects presented a tendency to peak in the macula for phases 1, 2, and 3, a consistent tendency in phase 4 and a variable tendency in phase 5. The feasibility of using an eye-tracker system to measure the distribution of light in the retina was demonstrated, thus helping to understand the role played by light exposure in the etiology of AMD. Results showed that a tendency for light to peak in the macula is a characteristic of some individuals and of certain tasks. In these situations, risk of AMD could be increased. No significant difference was observed based on age.