50 resultados para mangrove forest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We produced a landscape scale map of mean tree height in mangrove forests in Everglades National Park (ENP) using the elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM data was calibrated using airborne lidar data and a high resolution USGS digital elevation model (DEM). The resulting mangrove height map has a mean tree height error of 2.0 m (RMSE) over a pixel of 30 m. In addition, we used field data to derive a relationship between mean forest stand height and biomass in order to map the spatial distribution of standing biomass of mangroves for the entire National Park. The estimation showed that most of the mangrove standing biomass in the ENP resides in intermediate- height mangrove stands around 8 m. We estimated the total mangrove standing biomass in ENP to be 5.6 X 109 kg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.