38 resultados para civil engineering and architecture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to develop Multinomial Logit models for the mode choice behavior of immigrants, with key focuses on neighborhood effects and behavioral assimilation. The first aspect shows the relationship between social network ties and immigrants’ chosen mode of transportation, while the second aspect explores the gradual changes toward alternative mode usage with regard to immigrants’ migrating period in the United States (US). Mode choice models were developed for work, shopping, social, recreational, and other trip purposes to evaluate the impacts of various land use patterns, neighborhood typology, socioeconomic-demographic and immigrant related attributes on individuals’ travel behavior. Estimated coefficients of mode choice determinants were compared between each alternative mode (i.e., high-occupancy vehicle, public transit, and non-motorized transport) with single-occupant vehicles. The model results revealed the significant influence of neighborhood and land use variables on the usage of alternative modes among immigrants. Incorporating these indicators into the demand forecasting process will provide a better understanding of the diverse travel patterns for the unique composition of population groups in Florida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of building envelopes and roofing systems significantly depends on accurate knowledge of wind loads and the response of envelope components under realistic wind conditions. Wind tunnel testing is a well-established practice to determine wind loads on structures. For small structures much larger model scales are needed than for large structures, to maintain modeling accuracy and minimize Reynolds number effects. In these circumstances the ability to obtain a large enough turbulence integral scale is usually compromised by the limited dimensions of the wind tunnel meaning that it is not possible to simulate the low frequency end of the turbulence spectrum. Such flows are called flows with Partial Turbulence Simulation.^ In this dissertation, the test procedure and scaling requirements for tests in partial turbulence simulation are discussed. A theoretical method is proposed for including the effects of low-frequency turbulences in the post-test analysis. In this theory the turbulence spectrum is divided into two distinct statistical processes, one at high frequencies which can be simulated in the wind tunnel, and one at low frequencies which can be treated in a quasi-steady manner. The joint probability of load resulting from the two processes is derived from which full-scale equivalent peak pressure coefficients can be obtained. The efficacy of the method is proved by comparing predicted data derived from tests on large-scale models of the Silsoe Cube and Texas-Tech University buildings in Wall of Wind facility at Florida International University with the available full-scale data.^ For multi-layer building envelopes such as rain-screen walls, roof pavers, and vented energy efficient walls not only peak wind loads but also their spatial gradients are important. Wind permeable roof claddings like roof pavers are not well dealt with in many existing building codes and standards. Large-scale experiments were carried out to investigate the wind loading on concrete pavers including wind blow-off tests and pressure measurements. Simplified guidelines were developed for design of loose-laid roof pavers against wind uplift. The guidelines are formatted so that use can be made of the existing information in codes and standards such as ASCE 7-10 on pressure coefficients on components and cladding.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. ^ The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. ^ Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and quality in the complex coastal urban watershed of Miami River Basin, Florida by developing a Storm Water Management Model (EPA SWMM 5). Regression-based empirical models were also developed to explain stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff and quality were most sensitive to rainfall, imperviousness, and conversion of open lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors while external stressors were dominant for total nitrogen and specific conductance. The research findings and tools will be useful for proactive monitoring and management of storm runoff and urban stream water quality under the changing climate and environment in South Florida and around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study computed trends in extreme precipitation events of Florida for 1950-2010. Hourly aggregated rainfall data from 24 stations of the National Climatic Data Centre were analyzed to derive time-series of extreme rainfalls for 12 durations, ranging from 1 hour to 7 day. Non-parametric Mann-Kendall test and Theil-Sen Approach were applied to detect the significance of trends in annual maximum rainfalls, number of above threshold events and average magnitude of above threshold events for four common analysis periods. Trend Free Pre-Whitening (TFPW) approach was applied to remove the serial correlations and bootstrap resampling approach was used to detect the field significance of trends. The results for annual maximum rainfall revealed dominant increasing trends at the statistical significance level of 0.10, especially for hourly events in longer period and daily events in recent period. The number of above threshold events exhibited strong decreasing trends for hourly durations in all time periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is part of continued efforts to correlate the hydrology of East Fork Poplar Creek (EFPC) and Bear Creek (BC) with the long term distribution of mercury within the overland, subsurface, and river sub-domains. The main objective of this study was to add a sedimentation module (ECO Lab) capable of simulating the reactive transport mercury exchange mechanisms within sediments and porewater throughout the watershed. The enhanced model was then applied to a Total Maximum Daily Load (TMDL) mercury analysis for EFPC. That application used historical precipitation, groundwater levels, river discharges, and mercury concentrations data that were retrieved from government databases and input to the model. The model was executed to reduce computational time, predict flow discharges, total mercury concentration, flow duration and mercury mass rate curves at key monitoring stations under various hydrological and environmental conditions and scenarios. The computational results provided insight on the relationship between discharges and mercury mass rate curves at various stations throughout EFPC, which is important to best understand and support the management mercury contamination and remediation efforts within EFPC.