56 resultados para Freshwater marshes
Resumo:
Concentrations and fluxes of C, N, and P were measured in dwarf and fringe mangrove wetlands along the Taylor River, Florida, USA from 1996 to 1998. Data from these studies revealed considerable spatial and temporal variability. Concentrations of C, N, and P in the dwarf wetland showed seasonal trends, while water source was better at explaining concentrations in the fringe wetland. The total and dissolved organic carbon (TOC and DOC), total nitrogen (TN), and total phosphorus (TP) content of both wetlands was higher during the wet season or when water was flowing to the south (Everglades source). Concentrations of nitrate plus nitrite (NOx –), ammonium (NH4 +), and soluble reactive phosphorus (SRP) in the fringe wetland were all highest during the dry season or northerly flow (bay source). Nutrient concentrations most effectively explained patterns of flux in both wetlands. Increased wetland uptake of a given constituent was usually a function of its availability in the water column. However, the release of NOx – from the dwarf wetland was related to the NH4 + concentration, suggesting a nitrification signal. Nitrogen flux in the dwarf wetland was also related to surface water salinity and temperature. Our findings indicate that freshwater Everglades marshes are an important source of dissolved organic matter to these wetlands, while Florida Bay may be a source of dissolved inorganic nutrients. Our data also suggest that temperature, salinity, and nutrient concentrations (as driven by season and water source) influence patterns of materials flux in this mangrove wetland. Applying long-term water quality data to the relationships we extracted from these flux data, we estimated that TN and TP were imported by the dwarf wetland 87 ± 10 and 48 ± 17% of the year, respectively. With Everglades restoration, modifications in freshwater delivery may have considerable effects on the exchanges of nutrients and organic matter in these transitional mangrove wetlands.
Resumo:
A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Nin˜o events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the ‘‘white zone’’ freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.
Resumo:
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.
Resumo:
Historic changes in water-use management in the Florida Everglades have caused the quantity of freshwater inflow to Florida Bay to decline by approximately 60% while altering its timing and spatial distribution. Two consequences have been (1) increased salinity throughout the bay, including occurrences of hypersalinity, coupled with a decrease in salinity variability, and (2) change in benthic habitat structure. Restoration goals have been proposed to return the salinity climates (salinity and its variability) of Florida Bay to more estuarine conditions through changes in upstream water management, thereby returning seagrass species cover to a more historic state. To assess the potential for meeting those goals, we used two modeling approaches and long-term monitoring data. First, we applied the hydrological mass balance model FATHOM to predict salinity climate changes in sub-basins throughout the bay in response to a broad range of freshwater inflow from the Everglades. Second, because seagrass species exhibit different sensitivities to salinity climates, we used the FATHOM-modeled salinity climates as input to a statistical discriminant function model that associates eight seagrass community types with water quality variables including salinity, salinity variability, total organic carbon, total phosphorus, nitrate, and ammonium, as well as sediment depth and light reaching the benthos. Salinity climates in the western sub-basins bordering the Gulf of Mexico were insensitive to even the largest (5-fold) modeled increases in freshwater inflow. However, the north, northeastern, and eastern sub-basins were highly sensitive to freshwater inflow and responded to comparatively small increases with decreased salinity and increased salinity variability. The discriminant function model predicted increased occurrences ofHalodule wrightii communities and decreased occurrences of Thalassia testudinum communities in response to the more estuarine salinity climates. The shift in community composition represents a return to the historically observed state and suggests that restoration goals for Florida Bay can be achieved through restoration of freshwater inflow from the Everglades.
Resumo:
A high abundance of isoprenoid hydrocarbons, the botryococcenes, with carbon numbers from 32 to 34 were detected in the Florida Everglades freshwater wetlands. These compounds were present in varying amounts up to 106 μg/gdw in periphyton, 278 μg/gdw in floc, and 46 μg/gdw in soils. Their structures were determined based on comparison to standards, interpretation of their mass spectra and those of their hydrogenation products, and comparison of Kovats indexes to those reported in the literature. A total of 26 cyclic and acyclic botryococcenes with 8 skeletons were identified, including those with fewer degrees of unsaturation, which are proposed as early diagenetic derivatives from the natural products. This is the first report that botryococcenes occur in the Everglades freshwater wetlands. Their potential biogenetic sources from green algae and cyanobacteria were examined, but neither contained botryococcenes. Thus, the source implication of botryococcenes in this ecosystem needs further study.
Resumo:
The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.
Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes
Resumo:
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly
Resumo:
Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.
Resumo:
During the 1960s, water management practices resulted in the conversion of the wetlands that fringe northeastern Florida Bay (USA) from freshwater/oligohaline herbaceous marshes to dwarf red mangrove forests. Coincident with this conversion were several ecological changes to Florida Bay’s fauna, including reductions in the abundances of top trophic-level consumers: piscivorous fishes, alligators, crocodiles, and wading birds. Because these taxa rely on a common forage base of small demersal fishes, food stress has been implicated as playing a role in their respective declines. In the present study, we monitored the demersal fishes seasonally at six sites over an 8-year time period. During monitoring, extremely high rainfall conditions occurred over a 3.5-year period leading to salinity regimes that can be viewed as “windows” to the area’s natural past and future restored states. In this paper, we: (1) examine the changes in fish communities over the 8-year study period and relate them to measured changes in salinity; (2) make comparisons among marine, brackish and freshwater demersal fish communities in terms of species composition, density, and biomass; and (3) discuss several implications of our findings in light of the intended and unintended water management changes that are planned or underway as part of Everglades restoration. Results suggest the reduction in freshwater flow to Florida Bay over the last several decades has reduced demersal fish populations, and thus prey availability for apex consumers in the coastal wetlands compared to the pre-drainage inferred standard. Furthermore, greater discharge of freshwater toward Florida Bay may result in the re-establishment of pre-1960s fauna, including a more robust demersal-fish community that should prompt increases in populations of several important predatory species.
Resumo:
Synthesizing data from multiple studies generates hypotheses about factors that affect the distribution and abundance of species among ecosystems. Snails are dominant herbivores in many freshwater ecosystems, but there is no comprehensive review of snail density, standing stock, or body size among freshwater ecosystems. We compile data on snail density and standing stock, estimate body size with their quotient, and discuss the major pattern that emerges. We report data from 215 freshwater ecosystems taken from 88 studies that we placed into nine categories. Sixty-five studies reported density, seven reported standing stock, and 16 reported both. Despite the breadth of studies, spatial and temporal sampling scales were limited. Researchers used 25 different sampling devices ranging in area from 0.0015 to 2.5 m2. Most ecosystem categories had similar snail densities, standing stocks, and body sizes suggesting snails shared a similar function among ecosystems. Caribbean karst wetlands were a striking exception with much lower density and standing stock, but large body size. Disparity in body size results from the presence of ampullariids in Caribbean karst wetlands suggesting that biogeography affects the distribution of taxa, and in this case size, among aquatic ecosystems. We propose that resource quality explains the disparity in density and standing stock between Caribbean karst wetlands and other categories. Periphyton in Caribbean karst wetlands has high carbon-to-phosphorous ratios and defensive characteristics that inhibit grazers. Unlike many freshwater ecosystems where snails are key grazers, we hypothesize that a microbial loop captures much of the primary production in Caribbean karst wetlands.
Resumo:
1. Highly mobile top predators are hypothesized to spatially and/or temporally link disparate habitats through the combination of their movement and feeding patterns, but recent studies suggest that individual specialization in habitat use and feeding could keep habitats compartmentalized. 2. We used passive acoustic telemetry and stable isotope analysis to investigate whether specialization in movement and feeding patterns of American alligators (Alligator mississippiensis) in an oligotrophic subtropical estuary created habitat linkages between marine and estuarine/freshwater food webs. 3. Individual alligators adopted one of the three relatively distinct movement tactics that were linked to variation in diets. Fifty-six per cent of alligators regularly travelled from the upstream (freshwater/mid-estuary) areas into the downstream (marine-influenced) areas where salinities exceed those typically tolerated by alligators. Thirty-one per cent of the alligators made regular trips from the mid-estuarine habitat into the upstream habitat; 13% remained in the mid-estuary zone year-round. 4. Stable isotopic analysis indicated that, unlike individuals remaining in the mid-estuary and upstream zones, alligators that used the downstream zone fed at least partially from marine food webs and likely moved to access higher prey abundance at the expense of salt stress. Therefore, ‘commuting’ alligators may link marine food webs with those of the estuary and marshes in the coastal Everglades and create an upstream vector for allochthonous nutrient inputs into the estuary. 5. This study lends further support to the hypothesis that large-bodied highly mobile predators faced with trade-offs are likely to exhibit individual specialization leading to habitat linkages, rather than compartmentalization. However, the conditions under which this scenario occurs require further investigation.
Resumo:
Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.
Resumo:
Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Tree islands are an important structural component of many graminoid-dominated wetlands because they increase ecological complexity in the landscape. Tree island area has been drastically reduced with hydrologic modifications within the Everglades ecosystem, yet still little is known about the ecosystem ecology of Everglades tree islands. As part of an ongoing study to investigate the effects of hydrologic restoration on short hydroperiod marshes of the southern Everglades, we report an ecosystem characterization of seasonally flooded tree islands relative to locations described by variation in freshwater flow (i.e. locally enhanced freshwater flow by levee removal). We quantified: (1) forest structure, litterfall production, nutrient utilization, soil dynamics, and hydrologic properties of six tree islands and (2) soil and surface water physico-chemical properties of adjacent marshes. Tree islands efficiently utilized both phosphorus and nitrogen, but indices of nutrient-use efficiency indicated stronger P than N limitation. Tree islands were distinct in structure and biogeochemical properties from the surrounding marsh, maintaining higher organically bound P and N, but lower inorganic N. Annual variation resulting in increased hydroperiod and lower wet season water levels not only increased nitrogen use by tree species and decreased N:P values of the dominant plant species (Chrysobalanus icaco), but also increased soil pH and decreased soil temperature. When compared with other forested wetlands, these Everglades tree islands were among the most nutrient efficient, likely a function of nutrient immobilization in soils and the calcium carbonate bedrock. Tree islands of our study area are defined by: (1) unique biogeochemical properties when compared with adjacent short hydroperiod marshes and other forested wetlands and (2) an intricate relationship with marsh hydrology. As such, they may play an important and disproportionate role in nutrient and carbon cycling in Everglades wetlands. With the loss of tree islands that has occurred with the degradation of the Everglades system, these landscape processes may have been altered. With this baseline dataset, we have established a long-term ecosystem-scale experiment to follow the ecosystem trajectory of seasonally flooded tree islands in response to hydrologic restoration of the southern Everglades.