47 resultados para Elmwood Park
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. ^ As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. ^ Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.^
Resumo:
In 1998, a dispute between a federal government agency and the local community of Chacchoben resulted in the emergence of a community-based ecotourism (CBE) enterprise to be fully owned and operated by the community in conjunction with a complex arrangement of agreements and partnerships with external actors. CBE is usually framed as a lower-impact, often small-scale alternative to mass tourism and as a conservation and development strategy that can hypothetically protect biologically diverse landscapes while improving the lives of marginalized peasant and indigenous communities through their participation. This case study analyzes the roles of common property land tenure and social capital and how the unique dilemma of a mass community-based ecotourism theme park emerged in Chacchoben. Findings indicate that local decisions and processes of development, conservation, and land use are affected by the complex interaction between local and external institutions and fluctuating levels of social capital.