23 resultados para user generated services
Resumo:
Today, the development of domain-specific communication applications is both time-consuming and error-prone because the low-level communication services provided by the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. The User-centric Communication Middleware (UCM) is proposed to encapsulate the networking complexity and heterogeneity of basic multimedia and multi-party communication for upper-layer communication applications. And UCM provides a unified user-centric communication service to diverse communication applications ranging from a simple phone call and video conferencing to specialized communication applications like disaster management and telemedicine. It makes it easier to the development of domain-specific communication applications. The UCM abstraction and API is proposed to achieve these goals. The dissertation also tries to integrate the formal method into UCM development process. The formal model is created for UCM using SAM methodology. Some design errors are found during model creation because the formal method forces to give the precise description of UCM. By using the SAM tool, formal UCM model is translated to Promela formula model. In the dissertation, some system properties are defined as temporal logic formulas. These temporal logic formulas are manually translated to promela formulas which are individually integrated with promela formula model of UCM and verified using SPIN tool. Formal analysis used here helps verify the system properties (for example multiparty multimedia protocol) and dig out the bugs of systems.
Resumo:
The availability and pervasiveness of new communication services, such as mobile networks and multimedia communication over digital networks, has resulted in strong demands for approaches to modeling and realizing customized communication systems. The stovepipe approach used to develop today's communication applications is no longer effective because it results in a lengthy and expensive development cycle. To address this need, the Communication Virtual Machine (CVM) technology has been developed by researchers at Florida International University. The CVM technology includes the Communication Modeling Language (CML) and the platform, CVM, to model and rapidly realize communication models. ^ In this dissertation, we investigate the basic communication primitives needed to capture and specify an end-user's requirements for communication-intensive applications, and how these specifications can be automatically realized. To identify the basic communication primitives, we perform a feature analysis on a set of communication-intensive scenarios from the healthcare domain. Based on the feature analysis, we define a new version of CML that includes the meta-model definition (abstract syntax and static semantics) and a partial behavior model (operational semantics). To validate our CML definition, we present a case study that shows how one of the scenarios from the healthcare domain is modeled and automatically realized. ^
Resumo:
The convergence of data, audio and video on IP networks is changing the way individuals, groups and organizations communicate. This diversity of communication media presents opportunities for creating synergistic collaborative communications. This form of collaborative communication is however not without its challenges. The increasing number of communication service providers coupled with a combinatorial mix of offered services, varying Quality-of-Service and oscillating pricing of services increases the complexity for the user to manage and maintain ‘always best’ priced or performance services. Consumers have to manually manage and adapt their communication in line with differences in services across devices, networks and media while ensuring that the usage remain consistent with their intended goals. This dissertation proposes a novel user-centric approach to address this problem. The proposed approach aims to reduce the aforementioned complexity to the user by (1) providing high-level abstractions and a policy based methodology for automated selection of the communication services guided by high-level user policies and (2) providing services through the seamless integration of multiple communication service providers and providing an extensible framework to support the integration of multiple communication service providers. The approach was implemented in the Communication Virtual Machine (CVM), a model-driven technology for realizing communication applications. The CVM includes the Network Communication Broker, the layer responsible for providing a network-independent API to the upper layers of CVM. The initial prototype for the NCB supported only a single communication framework which limited the number, quality and types of services available. Experimental evaluation of the approach show the additional overhead of the approach is minimal compared to the individual communication services frameworks. Additionally the automated approach proposed out performed the individual communication services frameworks for cross framework switching.
Resumo:
With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.
Resumo:
The design of interfaces to facilitate user search has become critical for search engines, ecommercesites, and intranets. This study investigated the use of targeted instructional hints to improve search by measuring the quantitative effects of users' performance and satisfaction. The effects of syntactic, semantic and exemplar search hints on user behavior were evaluated in an empirical investigation using naturalistic scenarios. Combining the three search hint components, each with two levels of intensity, in a factorial design generated eight search engine interfaces. Eighty participants participated in the study and each completed six realistic search tasks. Results revealed that the inclusion of search hints improved user effectiveness, efficiency and confidence when using the search interfaces, but with complex interactions that require specific guidelines for search interface designers. These design guidelines will allow search designers to create more effective interfaces for a variety of searchapplications.
Resumo:
The Greater Everglades system imparts vital ecosystem services (ES) to South Florida residents including high quality drinking water supplies and a habitat for threatened and endangered species. As a result of the altered Everglades system and regional dynamics, restoration may either improve the provision of these services or impose a tradeoff between enhanced environmental goods and services and competing societal demands. The current study aims at understanding public preferences for restoration and generating willingness to pay (WTP) values for restored ES through the implementation of a discrete choice experiment. A previous study (Milon et al., 1999) generated WTP values amongst Floridians of up to $3.42 -$4.07 billion for full restoration over a 10-year period. We have collected data from 2,905 respondents taken from two samples who participated in an online survey designed to elicit the WTP values for selected ecological and social attributes included in the earlier study (Milon et al. 1999). We estimate that the Florida general public is willing to pay up to $854.1- $954.1 million over 10 years to avoid restrictions on their water usage and up to $90.8- $183.7 million over 10 years to restore the hydrological flow within the Water Conservation Area.
Resumo:
With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.
Resumo:
With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.