29 resultados para time-interleaved analog-to-digital converters (ADC)
Resumo:
From left to right: Pablo Haspel, BBC SGA President, BBC Campus Laura Farinas, SGA President, MMC Campus Sabrena O'Keefe, Assistant Director for the Center for Leadership and Service Vice Provost Steven Moll The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Crowd gathering for burial of the time capsule at Biscayne Bay Campus. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Crowd gathering for the burial of the time capsule at Biscayne Bay Campus. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Crowd watching the burial of the time capsule burial at Biscayne Bay Campus. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
From left to right: Laura Farinas, SGA President, MMC Campus Pablo Haspel, BBC SGA President, BBC Campus Sabrena O'Keefe, Assistant Director for the Center for Leadership and Service The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
From left to right: Laura Farinas, SGA President, MMC Campus Sabrena O'Keefe, Assistant Director for the Center for Leadership and Service Pablo Haspel, BBC SGA President, BBC Campus Vice Provost Steven Moll The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
The buried time capsule and plaque. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Buried time capsule with plaque and Biscayne Bay Campus. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Research into the dynamicity of job performance criteria has found evidence suggesting the presence of rank-order changes to job performance scores across time as well as intraindividual trajectories in job performance scores across time. These findings have influenced a large body of research into (a) the dynamicity of validities of individual differences predictors of job performance and (b) the relationship between individual differences predictors of job performance and intraindividual trajectories of job performance. In the present dissertation, I addressed these issues within the context of the Five Factor Model of personality. The Five Factor Model is arranged hierarchically, with five broad higher-order factors subsuming a number of more narrowly tailored personality facets. Research has debated the relative merits of broad versus narrow traits for predicting job performance, but the entire body of research has addressed the issue from a static perspective -- by examining the relative magnitude of validities of global factors versus their facets. While research along these lines has been enlightening, theoretical perspectives suggest that the validities of global factors versus their facets may differ in their stability across time. Thus, research is needed to not only compare the relative magnitude of validities of global factors versus their facets at a single point in time, but also to compare the relative stability of validities of global factors versus their facets across time. Also necessary to advance cumulative knowledge concerning intraindividual performance trajectories is research into broad vs. narrow traits for predicting such trajectories. In the present dissertation, I addressed these issues using a four-year longitudinal design. The results indicated that the validities of global conscientiousness were stable across time, while the validities of conscientiousness facets were more likely to fluctuate. However, the validities of emotional stability and extraversion facets were no more likely to fluctuate across time than those of the factors. Finally, while some personality factors and facets predicted performance intercepts (i.e., performance at the first measurement occasion), my results failed to indicate a significant effect of any personality variable on performance growth. Implications for research and practice are discussed.
Resumo:
The primary dataset represents the vouchered botanical collections of James Graham and Jose Schunke Vigo in the Department of Ucayali, Peru, from October 1997 until the present. Over 3500 separate collections are included to date, many of which have associated images. We present here primary collections data. Other data on natural history collections for the Department of Ucayali have been compiled, but are not presented at this time. We hope to make this data available as part of a Ucayali Collections dataset, as time and resources permit. It is hoped that this data will will contribute to the exchange of scientific information, and will enhance our knowledge of, and appreciation for, the complex of species, habitats, communities, ecosystems and ecoregions of Amazonia.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.