61 resultados para sweater periphyton


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed diatom-based prediction models of hydrology and periphyton abundance to inform assessment tools for a hydrologically managed wetland. Because hydrology is an important driver of ecosystem change, hydrologic alterations by restoration efforts could modify biological responses, such as periphyton characteristics. In karstic wetlands, diatoms are particularly important components of mat-forming calcareous periphyton assemblages that both respond and contribute to the structural organization and function of the periphyton matrix. We examined the distribution of diatoms across the Florida Everglades landscape and found hydroperiod and periphyton biovolume were strongly correlated with assemblage composition. We present species optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting the directionality of change in these important variables. Predictions of these variables were mapped to visualize landscape-scale spatial patterns in a dominant driver of change in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats of differing abundance can be used to infer past conditions and inform management decisions based on how assemblages are changing. This study captures diatom responses to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale bioassessment efforts in a large wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of remotely sensed data for environmental and ecological assessment has recently become more widespread in wetland research and management and advantages and limitations of this approach have been addresses (Ozesmi and Bauer 2002). Applications of remote sensing (RS) methods vary in spatial and temporal extent and resolution, in the types of data acquired, and in digital processing and pattern recognition algorithms used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/fce_lter_photos/1301/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural, unenriched Everglades wetlands are known to be limited by phosphorus (P) and responsive to P enrichment. However, whole-ecosystem evaluations of experimental P additions are rare in Everglades or other wetlands. We tested the response of the Everglades wetland ecosystem to continuous, low-level additions of P (0, 5, 15, and 30 μg L−1 above ambient) in replicate, 100 m flow-through flumes located in unenriched Everglades National Park. After the first six months of dosing, the concentration and standing stock of phosphorus increased in the surface water, periphyton, and flocculent detrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean = 149 μg P g−1), while the flocculent detrital layer stored most of the accumulated P (30 μg L−1: mean = 1.732 g P m−2, control: mean = 0.769 g P m−2). Significant short-term responses of P concentration and standing stock were observed primarily in the high dose (30 μg L−1 above ambient) treatment. In addition, the biomass and estimated P standing stock of aquatic consumers increased in the 30 and 5 μg L−1 treatments. Alterations in P concentration and standing stock occurred only at the upstream ends of the flumes nearest to the point source of added nutrient. The total amount of P stored by the ecosystem within the flume increased with P dosing, although the ecosystem in the flumes retained only a small proportion of the P added over the first six months. These results indicate that oligotrophic Everglades wetlands respond rapidly to short-term, low-level P enrichment, and the initial response is most noticeable in the periphyton and flocculent detrital layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation research project addressed the question of how hydrologic restoration of the Everglades is impacting the nutrient dynamics of marsh ecosystems in the southern Everglades. These effects were analyzed by quantifying nitrogen (N) cycle dynamics in the region. I utilized stable isotope tracer techniques to investigate nitrogen uptake and cycling between the major ecosystem components of the freshwater marsh system. I recorded the natural isotopic signatures (δ15N and δ 13C) for major ecosystem components from the three major watersheds of the Everglades: Shark River Slough, Taylor Slough, and C-111 basin. Analysis of δ15 N and δ13C natural abundance data were used to demonstrate the spatial extent to which nitrogen from anthropogenic or naturally enriched sources is entering the marshes of the Everglades. In addition, I measured the fluxes on N between various ecosystem components at both near-canal and estuarine ecotone locations. Lastly, I investigated the effect of three phosphorus load treatments (0.00 mg P m-2, 6.66 mg P m-2, and 66.6 mg P m-2) on the rate and magnitude of ecosystem N-uptake and N-cycling. The δ15N and δ13C natural abundance data supported the hypothesis that ecosystem components from near-canal sites have heavier, more enriched δ 15N isotopic signatures than downstream sites. The natural abundance data also showed that the marshes of the southern Everglades are acting as a sink for isotopically heavier, canal-borne dissolved inorganic nitrogen (DIN) and a source for "new" marsh derived dissolved organic nitrogen (DON). In addition, the 15N mesocosm data showed the rapid assimilation of the 15N tracer by the periphyton component and the delayed N uptake by soil and macrophyte components in the southern Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origins of population dynamics depend on interplay between abiotic and biotic factors; the relative importance of each changing across space and time. Predation is a central feature of ecological communities that removes individuals (consumption) and alters prey traits (non-consumptive). Resource quality mitigates non-consumptive predator effects by stimulating growth and reproduction. Disturbance resets predator-prey interactions by removing both. I integrate experiments, time-series analysis, and performance trials to examine the relative importance of these on the population dynamics of a snail species by studying a variety of their traits. A review of ninety-three published articles revealed that snail abundance was much less in the Everglades and similar ecosystems compared to all other freshwater ecosystems considered. Separating consumptive from non-consumptive (cues) predator effects at different phosphorous levels with an experiment determined that phosphorous stimulated, but predator cues inhibited snail growth (34% vs. 23%), activity (38% vs. 53%), and reproductive effort (99% vs. 90%) compared to controls. Cues induced taller shells and smaller openings and moved to refugia where they reduced periphyton by 8%. Consumptive predator effects were minor in comparison. In a reciprocal transplant cage experiment along a predator cue and phosphorous gradient created by a canal, snails grew 10% faster and produced 37% more eggs far from the canal (fewer cues) when fed phosphorous-enriched periphyton from near the canal. Time-series analysis at four sites and predator performance trials reveal that phosphorous-enriched regions support larger snail populations, seasonal drying removes snails at all sites, crayfish negatively affect populations in enriched regions, and molluscivorous fish consume snails in the wet season. Combining these studies reveals interplay between resources, predators, and seasonality that limit snail populations in the Everglades and lead to their low abundance compared to other freshwater ecosystems. Resource quality is emerging as the critical factor because improving resources profoundly improved growth and reproduction; seasonal drying and predation become important at times and places. This work contributes to the general understanding in ecology of the relative importance of different factors that structure populations and provides evidence that bolsters monitoring efforts to assess the Comprehensive Everglades Restoration Plan that show phosphorous enrichment is a major driver of ecosystem change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few studies have examined long-term ecological effects of sustained low-level nutrient enhancement on wetland biota. To determine sustained effects of phosphorus (P) addition on Everglades marshes we added P at low levels (5, 15, and 30 µg L-1 above ambient) for 5 yr to triplicate 100-m flow-through channels in pristine marsh. A cascade of ecological responses occurred in similar sequence among treatments. Although the rate of change increased with dosing level, treatments converged to similar enriched endpoints, characterized most notably by a doubling of plant biomass and elimination of native, calcareous periphyton mats. The full sequence of biological changes occurred without an increase in water total P concentration, which remained near ambient levels until Year 5. This study indicates that Everglades marshes have a near-zero assimilative capacity for P without a state change, that ecosystem responses to enrichment accumulate over time, and that downstream P transport mainly occurs through biota rather than the water column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mastogloia smithii var. lacustris Grun. is the dominant diatom in periphyton mats of the calcareous, freshwater to brackish wetlands of Caribbean coasts. Despite oligotrophy, frequent desiccation, high irradiance and temperatures, and occasional fire, periphyton communities in these wetlands can produce over 2000 g m-2 of organic biomass, prompting studies that examine stress resistance and maintenance of algal mats under extreme conditions. The diatom flora inhabiting periphyton mats from over 500 sites in the Florida Everglades and similar wetlands in Belize, Jamaica and Mexico was examined, and M. smithii var. lacustris was a persistent component, present in 97% of samples and comprising up to 80% of a diverse diatom assemblage. Valves at various stages of division were observed encased in extracellular polysaccharide that exceeded the cell volume; SEM observations confirm issuance from mantle pores resulting in suspension of the cell in a matrix dominated by cyanobacterial filaments. Using corresponding biophysical data from the collection sites, we define the optima for M. smithii var. lacustris along salinity, pH, phosphorus, and water depth gradients. Experiments revealed a collapse of M. smithii var. lacustris populations in the presence of above-ambient phosphorus concentrations and a rapid resurgence upon reflooding of desiccated mats. This widespread diatom taxon appears to play a critical role similar to that of cyanobacteria in microbial mats, and its disappearance in the presence of enrichment threatens biodiversity and the natural function in these systems that are increasingly influenced by urbanization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative importance of algal and detrital energy pathways remains a central question in wetlands ecology. We used bulk stable isotope analysis and fatty acid composition to investigate the relative contributions of periphyton (algae) and floc (detritus) in a freshwater wetland with the goal of determining the inputs of these resource pools to lower trophic-level consumers. All animal samples revealed fatty acid markers indicative of both microbial (detrital) and algal origins, though the relative contributions varied among species. Vascular plant markers were in low abundance in most consumers. Detritivory is important for chironomids and amphipods, as demonstrated by the enhanced bacterial fatty acids present in both consumers, while algal resources, in the form of periphyton, likely support ephemeropteran larvae. Invertebrates such as amphipods and grass shrimp appear to be important resources for small omnivorous fish, while Poecilia latipinna appear to strongly use periphyton and Ephemeroptera larvae as food sources. Both P. latipinna and Lepomis spp. assimilated small amounts of vascular plant debris, possibly due to unintentional ingestion of floc while foraging for invertebrates and insect larvae. Physid snails, Haitia spp., were characterized by considerably different fatty acid compositions than other taxa examined, and likely play a unique role in Everglades’ food webs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction of artificial reefs in the oligotrophic seagrass meadows of central Florida Bay attracted large aggregations of fish and invertebrates, and assays of nutrient availability indicated increases in availability of nutrients to sediment microalgae, periphyton, and seagrasses around reefs. An average of 37.8 large (> 10 cm) mobile animals were observed on each small artificial reef. The dominant fish species present was the gray snapper (Lutjanus griseus Linnaeus, 1758). Four yrs after the establishment of the artificial reefs, microphytobenthos abundance was twice as high in reef plots (1.7 ± 0.1 μg chl-a cm-2) compared to control plots (0.9 ± 0.1 μg chl-a cm-2). The accumulation of periphyton on glass periphytometers was four times higher in artificial reef plots (200.1 ± 45.8 mg chl-a m-2) compared to control plots (54.8 ± 6.8 mg chl-a m-2). The seagrass beds surrounding the artificial reefs changed rapidly, from a sparse Thalassia testudinum (Banks & Soland. ex König) dominated community, which persisted at control plots, to a community dominated by Halodule wrightii (Ascherson). Such changes mirror the changes induced in experimentally fertilized seagrass beds in Florida, strongly suggesting that the aggregations of animals attracted by artificial reefs concentrated nutrients in this oligotrophic seascape, favoring the growth of fast-growing primary producers like microphytobenthos and periphyton, and changing the competitively dominant seagrass from slow-growing T. testudinum to faster-growing H. wrightii in the vicinity of the reefs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.