51 resultados para phylogenetic community structure
Resumo:
The influence of hydrological dynamics on vegetation distribution and the structuring of wetland environments is of growing interest as wetlands are modified by human action and the increasing threat from climate change. Hydrological properties have long been considered a driving force in structuring wetland communities. We link hydrological dynamics with vegetation distribution across Everglades National Park (ENP) using two publicly available datasets to study the probability structure of the frequency, duration, and depth of inundation events along with their relationship to vegetation distribution. This study is among the first to show hydrologic structuring of vegetation communities at wide spatial and temporal scales, as results indicate that the percentage of time a location is inundated and its mean depth are the principal structuring variables to which individual communities respond. For example, sawgrass, the most abundant vegetation type within the ENP, is found across a wide range of time inundated percentages and mean depths. Meanwhile, other communities like pine savanna or red mangrove scrub are more restricted in their distribution and found disproportionately at particular depths and inundations. These results, along with the probabilistic structure of hydropatterns, potentially allow for the evaluation of climate change impacts on wetland vegetation community structure and distribution.
Resumo:
We evaluated metacommunity hypotheses of landscape arrangement (indicative of dispersal limitation) and environmental gradients (hydroperiod and nutrients) in structuring macroinvertebrate and fish communities in the southern Everglades. We used samples collected at sites from the eastern boundary of the southern Everglades and from Shark River Slough, to evaluate the role of these factors in metacommunity structure. We used eigenfunction spatial analysis to model community structure among sites and distance-based redundancy analysis to partition the variability in communities between spatial and environmental filters. For most animal communities, hydrological parameters had a greater influence on structure than nutrient enrichment, however both had large effects. The influence of spatial effects indicative of dispersal limitation was weak and only periphyton infauna appeared to be limited by regional dispersal. At the landscape scale, communities were well-mixed, but strongly influenced by hydrology. Local-scale species dominance was influenced by water-permanence and nutrient enrichment. Nutrient enrichment is limited to water inflow points associated with canals, which may explain its impact in this data set. Hydroperiod and nutrient enrichment are controlled by water managers; our analysis indicates that the decisions they make have strong effects on the communities at the base of the Everglades food web.
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro- Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June - October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats.
Resumo:
Executive Summary: This report presents what we have learned about tree islands of Shark Slough and adjacent marshes of Everglades National Park (ENP), based on ecological studies carried out in these wetlands during the period 2000-2003. The tree islands of Shark Slough share many features with tree islands elsewhere in the Everglades. Their current composition and community structure is determined to a large extent by recent hydrology, as well as by disturbances (fire, freezes, hurricanes, man). Tree islands have historical, cultural, and biological values that are recognized by nearly all parties to the Comprehensive Everglades Restoration Plan (CERP). Maintaining and/or restoring the health of tree islands are major objectives of CERP. Consequently, there is a need within CERP for tools to assess the health of tree islands, and to relate these measures to the hydrologic regime to which they are exposed.
Resumo:
Habitat loss and fragmentation have been implicated as driving forces behind recent waves of extinction. The regional landscape where this study occurred is a mosaic of forest and grassland, and therefore provides an ideal system with which to investigate the implications of habitat patchiness for the distribution and ecology of organisms. Here I describe patterns of amphibian and reptile distribution among and within habitats at the study site, investigate associations between habitat and community structure, describe nested subset patterns on forest islands, and quantify the relationship between body size and density across ecological scales and taxonomic groups. ^ Species richness did not vary across habitats, between forest island isolation classes or between island edges and cores. In contrast, species composition varied at all three ecological scales, reflecting differences in the distribution of both forest and open-habitat affiliated species. Species composition was associated with multivariate habitat profiles, with differences occurring along the isolation gradient of forest islands rather than the area gradient. The relationship between species composition and habitat was stronger for amphibians than for reptiles, a pattern that may be ascribed to physiological differences between the two groups. Analysis of nested subset pattern of community structure indicated that species composition of islands is nested as a function of isolation. Four species whose distribution on forest islands seems to be dispersal-limited drive the relationship between nestedness and isolation. Although there were several examples of shifts in body size across spatial scales and taxonomic groups, body size was not associated with density as predicted by theory, which may reflect differences between real and habitat islands, or differential responses of poikilothermic vertebrates to changes in density relative to homeotherms. ^ Taken together, the strongest result to emerge from this research is the importance of isolation, rather than area, on community structure in this system. Much evidence suggested that different ecological groups of species show distinct patterns of distribution both within and among habitat types. This suggests that species distributions at this site are not the result of 'neutral' processes at the community level, but rather reflect fundamental differences in the ecology of component species. ^
Resumo:
Biological diversity is threatened worldwide and it is a priority to generate more information that can be used both for understanding ecological processes and determining conservation strategies. For my dissertation, I focused on amphibian diversity patterns in lowland rainforests of southwestern Amazonia to evaluate the importance of habitat heterogeneity in the region. My main purpose was to test the hypothesis that amphibian communities in different forest types differ in species richness, composition, and abundance. I used standardized visual encounter surveys to quantify the species composition and abundance of amphibians at four sites, each containing four forest types (floodplain, terra firme, bamboo, and palm swamp). I used leaf-litter plots to evaluate the effect of soil and leaf-litter characteristics on species richness and abundance of leaf-litter frogs. I intensively sampled at one site and then sampled three other sites (distance among sites varied 3.5–105 km) to evaluate whether the patterns observed at one site were similar elsewhere. I also updated the information on threatened and potentially threatened amphibians in Peru and my study region. I found that no species appears to have experienced population declines in southeastern Peru, suggesting that the region still contains the original species pool. My results support the hypothesis that amphibian communities differ across forest types and that patterns observed at the local scale (one site) are similar at the regional scale (four sites). My data also indicate that there is no correlation between species composition and geographic distance among sites. Instead, an important proportion of the gamma diversity is represented by habitat-related beta diversity. My leaf-litter plot data showed that part of the variation in the leaf-litter community structure is explained by soil and litter characteristics. I found that soil total phosphorus and, to a lesser extent, humidity, leaf-litter mass, and pH is linked to species presence/absence and abundance. My study provides the first standardized, quantitative comparison of amphibian community structure across four major forest types in southwestern Amazonia and highlights the fact that forest types are complementary and necessary for maintaining high species richness in the region.
Resumo:
Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.
Resumo:
Management of ecological disturbances requires an understanding of the time scale and dynamics of community responses to disturbance events. To characterize long-term seagrass bed responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots (0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design for 7 years. Five of the six sites exhibited strong P limitation. Over the first 2 years, P enrichment increased Thalassia testudinum cover in the three most P-limited sites. After 3 years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of colonization was variable among sites, possibly due to differences in the supply of viable propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; Halodule increased in total biomass but did not appear to change its aboveground: belowground tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by increases in Thalassia aboveground biomass, which promoted the settlement of suspended particulate matter containing phosphorus. Our study demonstrated that lowintensity press disturbance events such as phosphorus enrichment can initiate a slow, ramped successional process that may alter community structure over many years.
Resumo:
We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambient T. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers. N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays of T. testudinum tissue N:P ratios.
Resumo:
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.
Resumo:
Anthropogenic habitat alterations and water-management practices have imposed an artificial spatial scale onto the once contiguous freshwater marshes of the Florida Everglades. To gain insight into how these changes may affect biotic communities, we examined whether variation in the abundance and community structure of large fishes (SL . 8 cm) in Everglades marshes varied more at regional or intraregional scales, and whether this variation was related to hydroperiod, water depth, floating mat volume, and vegetation density. From October 1997 to October 2002, we used an airboat electrofisher to sample large fishes at sites within three regions of the Everglades. Each of these regions is subject to unique watermanagement schedules. Dry-down events (water depth , 10 cm) occurred at several sites during spring in 1999, 2000, 2001, and 2002. The 2001 dry-down event was the most severe and widespread. Abundance of several fishes decreased significantly through time, and the number of days post-dry-down covaried significantly with abundance for several species. Processes operating at the regional scale appear to play important roles in regulating large fishes. The most pronounced patterns in abundance and community structure occurred at the regional scale, and the effect size for region was greater than the effect size for sites nested within region for abundance of all species combined, all predators combined, and each of the seven most abundant species. Non-metric multi-dimensional scaling revealed distinct groupings of sites corresponding to the three regions. We also found significant variation in community structure through time that correlated with the number of days post-dry-down. Our results suggest that hydroperiod and water management at the regional scale influence large fish communities of Everglades marshes.
Resumo:
The abundance of calcareous green algae was recorded quarterly at 28 sites within the Florida Keys National Marine Sanctuary (FKNMS) for a period of 7 years as part of a sea grass monitoring program. To evaluate the validity of using the functional-form group approach, we designed a sampling method that included the functional-form group and the component genera. This strategy enabled us to analyze the spatiotemporal patterns in the abundance of calcareous green algae as a group and to describe synchronous behavior among its genera through the application of a nonlinear regression model to both categories of data. Spatial analyses revealed that, in general, all genera displayed long-term trends of increasing abundance at most sites; however, at some sites the long-term trends for genera opposed one another. Strong synchrony in the timing of seasonal changes was found among all genera, possibly reflecting similar reproductive and seasonal growth pattern, but the variability in the magnitude of seasonal changes was very high among genera and sites. No spatial patterns were found in long-term or seasonal changes; the only significant relation detected was for slope, with sites closer to land showing higher values, suggesting that some factors associated with land proximity are affecting this increase. We conclude that the abundances of genera behaved differently from the functional-form group, indicating that the use of the functionalform group approach may be unsuitable to detect changes in sea grass community structure in the FKNMS at the existing temporal and spatial scale of the monitoring program.
Resumo:
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.
Resumo:
The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions.
Resumo:
Body size is a fundamental structural characteristic of organisms, determining critical life history and physiological traits, and influencing population dynamics, community structure, and ecosystem function. For my dissertation, I focused on effects of body size on habitat use and diet of important coastal fish predators, as well as their influence on faunal communities in Bahamian wetlands. First, using acoustic telemetry and stable isotope analysis, I identified high variability in movement patterns and habitat use among individuals within a gray snapper (Lutjanus griseus) and schoolmaster snapper (L. apodus) population. This intrapopulation variation was not explained by body size, but by individual behavior in habitat use. Isotope values differed between individuals that moved further distances and individuals that stayed close to their home sites, suggesting movement differences were related to specific patterns of foraging behavior. Subsequently, while investigating diet of schoolmaster snapper over a two-year period using stomach content and stable isotope analyses, I also found intrapopulation diet variation, mostly explained by differences in size class, individual behavior and temporal variability. I then developed a hypothesis-testing framework examining intrapopulation niche variation between size classes using stable isotopes. This framework can serve as baseline to categorize taxonomic or functional groupings into specific niche shift scenarios, as well as to help elucidate underlying mechanisms causing niche shifts in certain size classes. Finally, I examined the effect of different-sized fish predators on epifaunal community structure in shallow seagrass beds using exclusion experiments at two spatial scales. Overall, I found that predator effects were rather weak, with predator size and spatial scale having no impact on the community. Yet, I also found some evidence of strong interactions on particular common snapper prey. As Bahamian wetlands are increasingly threatened by human activities (e.g., overexploitation, habitat degradation), an enhanced knowledge of the ecology of organisms inhabiting these systems is crucial for developing appropriate conservation and management strategies. My dissertation research contributed to this effort by providing critical information about the resource use of important Bahamian fish predators, as well as their effect on faunal seagrass communities.