23 resultados para information system use
Resumo:
As congestion management strategies begin to put more emphasis on person trips than vehicle trips, the need for vehicle occupancy data has become more critical. The traditional methods of collecting these data include the roadside windshield method and the carousel method. These methods are labor-intensive and expensive. An alternative to these traditional methods is to make use of the vehicle occupancy information in traffic accident records. This method is cost effective and may provide better spatial and temporal coverage than the traditional methods. However, this method is subject to potential biases resulting from under- and over-involvement of certain population sectors and certain types of accidents in traffic accident records. In this dissertation, three such potential biases, i.e., accident severity, driver’s age, and driver’s gender, were investigated and the corresponding bias factors were developed as needed. The results show that although multi-occupant vehicles are involved in higher percentages of severe accidents than are single-occupant vehicles, multi-occupant vehicles in the whole accident vehicle population were not overrepresented in the accident database. On the other hand, a significant difference was found between the distributions of the ages and genders of drivers involved in accidents and those of the general driving population. An information system that incorporates adjustments for the potential biases was developed to estimate the average vehicle occupancies (AVOs) for different types of roadways on the Florida state roadway system. A reasonableness check of the results from the system shows AVO estimates that are highly consistent with expectations. In addition, comparisons of AVOs from accident data with the field estimates show that the two data sources produce relatively consistent results. While accident records can be used to obtain the historical AVO trends and field data can be used to estimate the current AVOs, no known methods have been developed to project future AVOs. Four regression models for the purpose of predicting weekday AVOs on different levels of geographic areas and roadway types were developed as part of this dissertation. The models show that such socioeconomic factors as income, vehicle ownership, and employment have a significant impact on AVOs.
Resumo:
Beginning in the era of the Spanish conquest and taking the reader right up to the present day, this book focuses on how the landscape of Cuba has changed and evolved into the environment we see today. It illustrates the range of factors – economic, political and cultural – that have determined Cuba’s physical geography, and explores the shifting conservation measures which have been instituted in response to new methods in agriculture and land management. The text uses historical documents, fieldwork, Geographic Information System (GIS) data and remotely-sensed satellite imagery to detail Cuba’s extensive land-use history as well as its potential future. The author goes further to analyze the manner, speed and methods of landscape change, and examines the historical context and governing agendas that have had an impact on the relationship between Cuba’s inhabitants and their island. Gebelein also assesses the key role played by agricultural production in the framework of international trade required to sustain Cuba’s people and its economy. The book concludes with a review of current efforts by Cuban and other research scientists, as well as private investors, conservation managers and university professors who are involved in shaping Cuba’s evolving landscape and managing it during the country’s possible transition to a more politically diverse, enfranchised and open polity.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Automated information system design and implementation is one of the fastest changing aspects of the hospitality industry. During the past several years nothing has increased the professionalism or improved the productivity within the industry more than the application of computer technology. Intuitive software applications, deemed the first step toward making computers more people-literate, object-oriented programming, intended to more accurately model reality, and wireless communications are expected to play a significant role in future technological advancement.
Resumo:
This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.
Resumo:
As congestion management strategies begin to put more emphasis on person trips than vehicle trips, the need for vehicle occupancy data has become more critical. The traditional methods of collecting these data include the roadside windshield method and the carousel method. These methods are labor-intensive and expensive. An alternative to these traditional methods is to make use of the vehicle occupancy information in traffic accident records. This method is cost effective and may provide better spatial and temporal coverage than the traditional methods. However, this method is subject to potential biases resulting from under- and over-involvement of certain population sectors and certain types of accidents in traffic accident records. In this dissertation, three such potential biases, i.e., accident severity, driver¡¯s age, and driver¡¯s gender, were investigated and the corresponding bias factors were developed as needed. The results show that although multi-occupant vehicles are involved in higher percentages of severe accidents than are single-occupant vehicles, multi-occupant vehicles in the whole accident vehicle population were not overrepresented in the accident database. On the other hand, a significant difference was found between the distributions of the ages and genders of drivers involved in accidents and those of the general driving population. An information system that incorporates adjustments for the potential biases was developed to estimate the average vehicle occupancies (AVOs) for different types of roadways on the Florida state roadway system. A reasonableness check of the results from the system shows AVO estimates that are highly consistent with expectations. In addition, comparisons of AVOs from accident data with the field estimates show that the two data sources produce relatively consistent results. While accident records can be used to obtain the historical AVO trends and field data can be used to estimate the current AVOs, no known methods have been developed to project future AVOs. Four regression models for the purpose of predicting weekday AVOs on different levels of geographic areas and roadway types were developed as part of this dissertation. The models show that such socioeconomic factors as income, vehicle ownership, and employment have a significant impact on AVOs.