28 resultados para house, tree, windmill, church tower, figures, water


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Florida Everglades is an oligotrophic wetland system with tree islands as one of its most prominent landscape features. Total soil phosphorus concentrations on tree islands can be 6 to 100 times greater than phosphorus levels in the surrounding marshes and sloughs, making tree islands nutrient hotspots. Several mechanisms are believed to redistribute phosphorus to tree islands: subsurface water flows generated by evapotranspiration of trees, higher deposition rates of dry fallout, deposition of guano by birds and other animals, groundwater upwelling, and bedrock mineralization by tree exudates. A conceptual model is proposed, in which the focused redistribution of limiting nutrients, especially phosphorus, onto tree islands controls their maintenance and expansion. Because of increased primary production and peat accretion rates, the redistribution of phosphorus can result in an increase in both tree island elevation and size. Human changes to hydrology have greatly decreased the number and size of tree islands in parts of the Everglades. The proposed model suggests that the preservation of existing tree islands, and ultimately of the Everglades landscape, requires the maintenance of these phosphorus redistribution mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions: How are the early survival and growth of seedlings of Everglades tree species planted in an experimental setting on artificial tree islands affected by hydrology and substrate type? What are the implications of these responses for broader tree island restoration efforts? Location: Loxahatchee Impoundment Landscape Assessment (LILA), Boynton Beach, Florida, USA. Methods: An experiment was designed to test hydrological and substrate effects on seedling growth and survivorship. Two islands – a peat and a limestone-core island representing two major types found in the Everglades – were constructed in four macrocosms. A mixture of eight tree species was planted on each island in March of 2006 and 2007. Survival and height growth of seedlings planted in 2006 were assessed periodically during the next two and a half years. Results: Survival and growth improved with increasing elevation on both tree island substrate types. Seedlings' survival and growth responses along a moisture gradient matched species distributions along natural hydrological gradients in the Everglades. The effect of substrate on seedling performance showed higher survival of most species on the limestone tree islands, and faster growth on their peat-based counterparts. Conclusions: The present results could have profound implications for restoration of forests on existing landforms and artificial creation of tree islands. Knowledge of species tolerance to flooding and responses to different edaphic conditions present in wetlands is important in selecting suitable species to plant on restored tree islands

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2005 we initiated a project designed to better understand tree island structure and function in the Everglades and the wetlands bordering it. Focus was on the raised portions at the upstream end of the islands, where tropical hardwood species adapted to well-drained conditions usually are the most prominent component of the vegetation. The study design is hierarchical, with four levels; in general, a large number of sites is to be surveyed once for a limited set of parameters, and increasingly small sets of islands are to be sampled more intensively, more frequently, and for more aspects of ecosystem function. During the first year of the 3-year study, we completed surveys of 41 Level 1 (i.e., the least intensive level) islands, and established permanent plots in two and three islands of Levels 2 and 4 intensity, respectively. Tree species richness and structural complexity was highest in Shark Slough “hammocks”, while islands in Northeast Shark Slough and Water Conservation Area 3B, which receive heavy human use, were simpler, more park-like communities. Initial monitoring of soil moisture in Level 4 hammocks indicated considerable local variation, presumably associated with antecedent rainfall and current water levels in the adjacent marsh. Tree islands throughout the study area were impacted significantly by Hurricanes Katrina and Wilma in 2005, but appear to be recovering rapidly. As the project continues to include more islands and repeated measurements, we expect to develop a better grasp of tree island dynamics across the Everglades ecosystem, especially with respect to moisture relations and water levels in the adjacent marsh. The detailed progress report which follows is also available online at http://www.fiu.edu/~serp1/projects/treeislands/tree_islands_2005_annual_report.pd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current managed Everglades system, the pre-drainage, patterned mosaic of sawgrass ridges, sloughs and tree islands has been substantially altered or reduced largely as a result of human alterations to historic ecological and hydrological processes that sustained landscape patterns. The pre-compartmentalization ridge and slough landscape was a mosaic of sloughs, elongated sawgrass ridges (50-200m wide), and tree islands. The ridges and sloughs and tree islands were elongated in the direction of the water flow, with roughly equal area of ridge and slough. Over the past decades, the ridge-slough topographic relief and spatial patterning have degraded in many areas of the Everglades. Nutrient enriched areas have become dominated by Typha with little topographic relief; areas of reduced flow have lost the elongated ridge-slough topography; and ponded areas with excessively long hydroperiods have experienced a decline in ridge prevalence and shape, and in the number of tree islands (Sklar et al. 2004, Ogden 2005).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree islands, a prominent feature in both the marl prairie and ridge and slough landscapes of the Everglades, are sensitive to large-scale restoration actions associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect the internal water economy of islands, which in turn will influence plant community structure and function. To strengthen our ability to assess the “performance” of tree island ecosystems and predict how these hydrologic alterations would translate into ecosystem response, an improved understating of reference conditions of vegetation structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to associated physical and biological processes was initiated in 2005 with initial funding from Everglades National Park and South Florida Water Management District (SFWMD). The study continued through 2011 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0019 Modification No.: P00001).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Status and history of the Ridge-Slough Mosaic The Florida Everglades is a large subtropical wetland with diverse hydrologic, edaphic, and vegetative characteristics. Historically, a significant portion of this system was a slow moving river originating from the Kissimmee River floodplain, flowing into the vast but shallow Lake Okeechobee, and draining south-southwest over extensive peatlands into Florida Bay (McVoy 2011). Human-induced alterations to the hydrologic regime, including reduction, stabilization, and impoundment of water flow through diversion and compartmentalization of water via canals and levees have degraded pre-drainage vegetation patterns and microtopographic structure (Davis and Ogden 1994, Ogden 2005, McVoy 2011). The Everglades peatland emerged 5,000 years ago with the stabilization of sea level at approximately current elevations (Loveless 1959, Gleason and Stone 1994). This, combined with subtropical rainfalls, allowed a vast mass of water to slowly flow over a limestone bedrock platform 160 km long and 50 km wide at a near uniform descent totaling about 6 m, ultimately reaching Florida Bay (Stephens 1956, Gleason and Stone 1994, McVoy 2011). Vegetation quickly colonized the area, and peat, in the absence of adequate respiration, accumulated on the limestone bedrock to a depth of 3-3.7 m (Gleason and Stone 1994, McVoy et al. 2011). The “River of Grass” referenced by Douglas (1947) alludes to the dually intertwined processes of the historic riverine nature of the Everglades and the vast sawgrass (Cladium jamaicense) communities that have dominated the landscape for about the last 1,000 years (Bernhardt and Willard 2009).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the People’s Republic of China has begun to exhibit a more aggressive naval policy as a result of its decision to switch its naval force from a primarily green-water fleet (coastal) to a blue-water fleet (expeditionary) (“China’s New,” n.d.). This decision has brought China to loggerheads not only with other local East and South Asian powers such as India and Japan, but also with the predominant blue-water power of the world, the United States, that sees its supremacy threatened (“When Grand,” n.d.). Why would China embark on a route that would pit it against the world naval superpower, the United States, which has a huge lead on China in terms of naval blue-water power? Why would China try to challenge and match the U.S. Navy’s eleven aircraft carriers (“The World’s,” n.d.)? What could compel China to embark on a plan that would so disrupt the balance of power in the waters around Asia? To fully understand the Chinese government’s decision, one must first look at Chinese import figures and Chinese trade routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence water levels have on CO2 and CH4 efflux were investigated at the Loxahatchee Impoundment Landscape Assessment (LILA) research facility, located in Boynton Beach, FL, USA. Measurements of CO2 efflux were taken for 24 h periods four times for one year from study plots. Laboratory incubations of intact soil cores were sampled for CO2, CH4, and redox potential. Additionally, soil cores from wet and dry condition were incubated for determination of enzyme activity and macronutrient limitation on decomposition of organic matter from study soils. Water levels had a significant negative influence on CO2 efflux and redox, but did not significantly influence CH4 efflux. Study plots were significantly different in CH4 efflux and redox potential. Labile carbon was more limiting to potential CO2 and CH4 production than phosphorus, with the effect significantly greater from dry conditions soils. Enzyme activity results were variable with greater macronutrient responses from dry condition soils.