26 resultados para coral
Resumo:
Fisheries independent data on relatively unstudied nekton communities were used to explore the efficacy of new tools to be applied in the investigation of shallow coastal coral reef habitats. These data obtained through concurrent diver visual and acoustic surveys provided descriptions of spatial community distribution patterns across seasonal temporal scales in a previously undocumented region. Fish density estimates by both diver and acoustic methodologies showed a general agreement in ability to detect distributional patterns across reef tracts, though magnitude of density estimates were different. Fish communities in southeastern Florida showed significant trends in spatial distribution and seasonal abundance, with higher estimates of biomass obtained in the dry season. Further, community composition shifted across reef tracts and seasons as a function of the movements of several key reef species.
Resumo:
Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.^
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.
Resumo:
Most reef-building corals are known to engage in symbiosis not only with unicellular dinoflagellates from the genus, Symbiodinium, but they also sustain highly complex symbiotic associations with other microscopic organisms such as bacteria, fungi, and viruses. The details of these non-pathogenic interactions remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and a variety of coral species representative of differing morphologies. Studies have shown that certain bacterial orders associate specifically with certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enables both parties to find one another and thus creating the symbiosis. One potential chemical cue could be the compound DMSP (Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP and its derivatives during times of stress. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. Corals may be able to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. The cause of this attraction may stem from the capability of a variety of marine bacteria to catabolize DMSP into different metabolically significant pathways, which may be necessary for the survival of these mutualistic interactions. To test the hypothesis that coral-produced DMSP play a role in attracting symbiotic bacteria, this study utilized the advent of high-through sequencing paired with bacterial isolation techniques to properly characterize the microbial community in the stony coral Porites astreoides. We conducted DMSP swarming and chemotaxis assays to determine the response of these coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Preliminary data from this study suggests that six out of the ten bacterial isolates are capable of conducting unidirectional motility; these six isolates are also capable of conducting swarming motility in the direction of an increasing DMSP concentration gradient. This would indicate that there is a form of positive chemotaxis on behalf of the bacteria towards the DMSP compound. By obtaining a better understanding of the dynamics that drive the associations between bacterial communities and corals, we can further aid in the protection and conservation processes for corals. Also this study would further elucidate the significance of the DMSP compound in the survival of corals under times of stress.
Resumo:
Most reef-building corals are known to engage in symbiosis not only with unicellular dinoflagellates from the genus, Symbiodinium, but they also sustain highly complex symbiotic associations with other microscopic organisms such as bacteria, fungi, and viruses. The details of these non-pathogenic interactions remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and a variety of coral species representative of differing morphologies. Studies have shown that certain bacterial orders associate specifically with certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enables both parties to find one another and thus creating the symbiosis. One potential chemical cue could be the compound DMSP (Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP and its derivatives during times of stress. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. Corals may be able to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. The cause of this attraction may stem from the capability of a variety of marine bacteria to catabolize DMSP into different metabolically significant pathways, which may be necessary for the survival of these mutualistic interactions. To test the hypothesis that coral-produced DMSP play a role in attracting symbiotic bacteria, this study utilized the advent of high-through sequencing paired with bacterial isolation techniques to properly characterize the microbial community in the stony coral Porites astreoides. We conducted DMSP swarming and chemotaxis assays to determine the response of these coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Preliminary data from this study suggests that six out of the ten bacterial isolates are capable of conducting unidirectional motility; these six isolates are also capable of conducting swarming motility in the direction of an increasing DMSP concentration gradient. This would indicate that there is a form of positive chemotaxis on behalf of the bacteria towards the DMSP compound. By obtaining a better understanding of the dynamics that drive the associations between bacterial communities and corals, we can further aid in the protection and conservation processes for corals. Also this study would further elucidate the significance of the DMSP compound in the survival of corals under times of stress.
Resumo:
Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.
Resumo:
Abstract: Heavily used and highly valuable, the Florida Reef is one of the world's most threatened ecosystems. Stakeholders from a densely urbanized coastal region in proximity to the reef system recognize its degradation, but their comprehension of climate change and commitment to pay for sustainable management and research funding have been opaque. With an emphasis on recreational anglers, residential stakeholders were surveyed online about their marine activities, perceptions of resources and threats, and willingness to pay (WTP) for dedicated coral reef research funding in Florida. The majority of stakeholders are wealthy, well educated, and politically independent. Supermajorities favored the two scenarios of taxation for a Florida Coral Reef Research Fund, and the scenario with matching federal funds earned higher support. In regression analyses, several factors emerged as significant contributors to stakeholders’ preferences, and the four recurring factors in extended models were prioritizing the environment over the economy, donating to environmental causes, concern about coral reefs, and concern about climate change, with the latter indicating a recent shift of opinion. Status in terms of income and education were found insignificant, and surprisingly income was negatively correlated with WTP. Perceptions through lenses of environmental and emotional attachments appear to overwhelm conventional status-based factors. Applied statewide, the first scenario's extrapolated WTP (based on a sales tax rate of 2.9%) would generate $675 million annually, and the extrapolated WTP under the second scenario, with matching federal funds (based on a sales tax rate of 3.0%) would generate $1.4 billion. Keywords: willingness to pay, coral reef research, taxation, climate change, stakeholder, perceptions, Florida Reef, recreational fishing, anglers
Resumo:
The black band disease (BBD) microbial consortium often causes mortality of reef-building corals. Microbial chemical interactions (i.e., quorum sensing (QS) and antimicrobial production) may be involved in the BBD disease process. Culture filtrates (CFs) from over 150 bacterial isolates from BBD and the surface mucopolysaccharide layer (SML) of healthy and diseased corals were screened for acyl homoserine lactone (AHL) and Autoinducer-2 (AI-2) QS signals using bacterial reporter strains. AHLs were detected in all BBD mat samples and nine CFs. More than half of the CFs (~55%) tested positive for AI-2. Approximately 27% of growth challenges conducted among 19 isolates showed significant growth inhibition. These findings demonstrate that QS is actively occurring within the BBD microbial mat and that culturable bacteria from BBD and the coral SML are able to produce QS signals and antimicrobial compounds. This is the first study to identify AHL production in association with active coral disease.
Resumo:
The study evaluated the effects of herbivory pressure, nutrient availability and potential propagule supply on recruitment and succession of coral reef macroalgal communities. Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and macroalgal abundances were evaluated through time. Proportional abundances of macroalgal form-functional groups on recruitment and succession tiles were similar to field established communities within treatments, evidencing possible effects of adult macroalgae as propagule supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory reduction combined whereas on succession tiles nutrient loading increased abundance of articulated-calcareous only when herbivores were excluded. Macroalgal field established communities were only affected by herbivory reduction.