19 resultados para XML database management system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to explore the use of automated inventory management systems (IMS) and identify the stage of technology adoption for restaurants in Aruba. A case study analysis involving twelve members of the Aruba Gastronomic Association was conducted using a qualitative research design to gather information on approaches currently used as well as the reasons and perceptions managers/owners have for using or not using automated systems in their facilities. This is the first study conducted using the Aruba restaurant market. Therefore, the application of two technology adoption models was used to integrate critical factors relevant to the study. Major findings indicated the use of an automated IMS in restaurants is limited, thus underscoring the lack of adoption of technology in this area. The results also indicated that two major reasons that restaurants are not adopting IMS technology are budgetary constraints and service support. This study is imperative for two reasons: (1) the results of this study can be used as a comparison for future IMS adoption, not only for Aruba’s restaurant industry but also for other Caribbean destinations and the U.S., (2) this study also provides insight into the additional training and support help needed in hospitality technology services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In - Appraising Work Group Performance: New Productivity Opportunities in Hospitality Management – a discussion by Mark R. Edwards, Associate Professor, College of Engineering, Arizona State University and Leslie Edwards Cummings, Assistant Professor, College of Hotel Administration University of Nevada, Las Vegas; the authors initially provide: “Employee group performance variation accounts for a significant portion of the degree of productivity in the hotel, motel, and food service sectors of the hospitality industry. The authors discuss TEAMSG, a microcomputer based approach to appraising and interpreting group performance. TEAMSG appraisal allows an organization to profile and to evaluate groups, facilitating the targeting of training and development decisions and interventions, as well as the more equitable distribution of organizational rewards.” “The caliber of employee group performance is a major determinant in an organization's productivity and success within the hotel and food service industries,” Edwards and Cummings say. “Gaining accurate information about the quality of performance of such groups as organizational divisions, individual functional departments, or work groups can be as enlightening...” the authors further reveal. This perspective is especially important not only for strategic human resources planning purposes, but also for diagnosing development needs and for differentially distributing organizational rewards.” The authors will have you know, employee requirements in an unpredictable environment, which is what the hospitality industry largely is, are difficult to quantify. In an effort to measure elements of performance Edwards and Cummings look to TEAMSG, which is an acronym for Team Evaluation and Management System for Groups. They develop the concept. In discussing background for employees, Edwards and Cummings point-out that employees - at the individual level - must often possess and exercise varied skills. In group circumstances employees often work at locations outside of, or move from corporate unit-to-unit, as in the case of a project team. Being able to transcend individual-to-group mentality is imperative. “A solution which addresses the frustration and lack of motivation on the part of the employee is to coach, develop, appraise, and reward employees on the basis of group achievement,” say the authors. “An appraisal, effectively developed and interpreted, has at least three functions,” Edwards and Cummings suggest, and go on to define them. The authors do place a great emphasis on rewards and interventions to bolster the assertion set forth in their thesis statement. Edwards and Cummings warn that individual agendas can threaten, erode, and undermine group performance; there is no - I - in TEAM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^