19 resultados para Virtual Reality Structural Engineering Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the process of engineering design of structural shapes, the flat plate analysis results can be generalized to predict behaviors of complete structural shapes. In this case, the purpose of this project is to analyze a thin flat plate under conductive heat transfer and to simulate the temperature distribution, thermal stresses, total displacements, and buckling deformations. The current approach in these cases has been using the Finite Element Method (FEM), whose basis is the construction of a conforming mesh. In contrast, this project uses the mesh-free Scan Solve Method. This method eliminates the meshing limitation using a non-conforming mesh. I implemented this modeling process developing numerical algorithms and software tools to model thermally induced buckling. In addition, convergence analysis was achieved, and the results were compared with FEM. In conclusion, the results demonstrate that the method gives similar solutions to FEM in quality, but it is computationally less time consuming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion of steel tendons is a major problem for post-tensioned concrete, especially because corrosion of the steel strands is often hard to detect inside grouted ducts. Non-metallic tendons can serve as an alternative material to steel for post-tensioning applications. Carbon fiber reinforced polymer (CFRP), given its higher strength and elastic modulus, as well as excellent durability and fatigue strength, is the most practical option for post-tensioning applications. The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental bridges and pier caps. An experimental investigation and a numerical simulation were conducted to compare the performance of a scaled segmental bridge model, post-tensioned with two types of carbon fiber strands and steel strands. The model was tested at different prestress levels and at different loading configurations. While the study confirms feasibility of both types of carbon fiber strands for segmental bridge applications, and their similar serviceability behavior, strands with higher elastic modulus could improve structural performance and minimize displacements beyond service loads. As the second component of the project, a side-by-side comparison of two types of carbon fiber strands against steel strands was conducted in a scaled pier cap model. Two different strand arrangements were used for post-tensioning, with eight and six strands, respectively representing an over-design and a slight under-design relative to the factored demand. The model was tested under service and factored loads. The investigation confirmed the feasibility of using carbon fiber strands in unbonded post-tensioning of pier caps. Considering both serviceability and overload conditions, the general performance of the pier cap model was deemed acceptable using either type of carbon fiber strands and quite comparable to that of steel strands. In another component of this research, creep stress tests were conducted with carbon fiber composite cable (CFCC). The anchorages for all the specimens were prepared using a commercially available expansive grout. Specimens withstood 95% of the guaranteed capacity provided by the manufacturer for a period of five months, without any sign of rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.