19 resultados para Two Measures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Institutions have implemented many campus interventions to address student persistence/retention, one of which is Early Warning Systems (EWS). However, few research studies show evidence of interventions that incorporate noncognitive factors/skills, and psychotherapy/psycho-educational processes in the EWS. A qualitative study (phenomenological interview and document analysis) of EWS at both a public and private 4-year Florida university was conducted to explore EWS through the eyes of the administrators of the ways administrators make sense of students' experiences and the services they provide and do not provide to assist students. Administrators' understanding of noncognitive factors and the executive skills subset and their contribution to retention and the executive skills development of at-risk students were also explored. Hossler and Bean's multiple retention lenses theory/paradigms and Perez's retention strategies were used to guide the study. Six administrators from each institution who oversee and/or assist with EWS for first time in college undergraduate students considered academically at-risk for attrition were interviewed. Among numerous findings, at Institution X: EWS was infrequently identified as a service, EWS training was not conducted, numerous cognitive and noncognitive issues/deficits were identified for students, and services/critical departments such as EWS did not work together to share students' information to benefit students. Assessment measures were used to identify students' issues/deficits; however, they were not used to assess, track, and monitor students' issues/deficits. Additionally, the institution's EWS did address students' executive skills function beyond time management and organizational skills, but did not address students' psychotherapy/psycho-educational processes. Among numerous findings, at Institution Y: EWS was frequently identified as a service, EWS training was not conducted, numerous cognitive and noncognitive issues/deficits were identified for students, and services/critical departments such as EWS worked together to share students' information to benefit students. Assessment measures were used to identify, track, and monitor students' issues/deficits; however, they were not used to assess students' issues/deficits. Additionally, the institution's EWS addressed students' executive skills function beyond time management and organizational skills, and psychotherapy/psycho-educational processes. Based on the findings, Perez's retention strategies were not utilized in EWS at Institution X, yet were collectively utilized in EWS at Institution Y, to achieve Hossler and Bean's retention paradigms. Future research could be designed to test the link between engaging in the specific promising activities identified in this research (one-to-one coaching, participation in student success workshops, academic contracts, and tutoring) and student success (e.g., higher GPA, retention). Further, because this research uncovered some concern with how to best handle students with physical and psychological disabilities, future research could link these same promising strategies for improving student performance for example among ADHD students or those with clinical depression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protecting confidential information from improper disclosure is a fundamental security goal. While encryption and access control are important tools for ensuring confidentiality, they cannot prevent an authorized system from leaking confidential information to its publicly observable outputs, whether inadvertently or maliciously. Hence, secure information flow aims to provide end-to-end control of information flow. Unfortunately, the traditionally-adopted policy of noninterference, which forbids all improper leakage, is often too restrictive. Theories of quantitative information flow address this issue by quantifying the amount of confidential information leaked by a system, with the goal of showing that it is intuitively "small" enough to be tolerated. Given such a theory, it is crucial to develop automated techniques for calculating the leakage in a system. ^ This dissertation is concerned with program analysis for calculating the maximum leakage, or capacity, of confidential information in the context of deterministic systems and under three proposed entropy measures of information leakage: Shannon entropy leakage, min-entropy leakage, and g-leakage. In this context, it turns out that calculating the maximum leakage of a program reduces to counting the number of possible outputs that it can produce. ^ The new approach introduced in this dissertation is to determine two-bit patterns, the relationships among pairs of bits in the output; for instance we might determine that two bits must be unequal. By counting the number of solutions to the two-bit patterns, we obtain an upper bound on the number of possible outputs. Hence, the maximum leakage can be bounded. We first describe a straightforward computation of the two-bit patterns using an automated prover. We then show a more efficient implementation that uses an implication graph to represent the two- bit patterns. It efficiently constructs the graph through the use of an automated prover, random executions, STP counterexamples, and deductive closure. The effectiveness of our techniques, both in terms of efficiency and accuracy, is shown through a number of case studies found in recent literature. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.