17 resultados para TEMPORAL DYNAMICS
Resumo:
Estuaries are dynamic on many spatial and temporal scales. Distinguishing effects of unpredictable events from cyclical patterns can be challenging but important to predict the influence of press and pulse drivers in the face of climate change. Diatom assemblages respond rapidly to changing environmental conditions and characterize change on multiple time scales. The goals of this research were to 1) characterize diatom assemblages in the Charlotte Harbor watershed, their relationships with water quality parameters, and how they change in response to climate; and 2) use assemblages in sediment cores to interpret past climate changes and tropical cyclone activity. ^ Diatom assemblages had strong relationships with salinity and nutrient concentrations, and a quantitative tool was developed to reconstruct past values of these parameters. Assemblages were stable between the wet and dry seasons, and were more similar to each other than to assemblages found following a tropical cyclone. Diatom assemblages following the storm showed a decrease in dispersion among sites, a pattern that was consistent on different spatial scales but may depend on hydrological management regimes. ^ Analysis of sediment cores from two southwest Florida estuaries showed that locally-developed diatom inference models can be applied with caution on regional scales. Large-scale climate changes were suggested by environmental reconstructions in both estuaries, but with slightly different temporal pacing. Estimates of salinity and nutrient concentrations suggested that major hydrological patterns changed at approximately 5.5 and 3 kyrs BP. A highly temporally-resolved sediment core from Charlotte Harbor provided evidence for past changes that correspond with known climate records. Diatom assemblages had significant relationships with the three-year average index values of the Atlantic Multidecadal Oscillation and the El Niño Southern Oscillation. Assemblages that predicted low salinity and high total phosphorus also had the lowest dispersion and corresponded with some major storms in the known record, which together may provide a proxy for evidence of severe storms in the paleoecological record. ^
Resumo:
The main focus of this thesis was to gain a better understanding about the dynamics of risk perception and its influence on people’s evacuation behavior. Another major focus was to improve our knowledge regarding geo-spatial and temporal variations of risk perception and hurricane evacuation behavior. A longitudinal dataset of more than eight hundred households were collected following two major hurricane events, Ivan and Katrina. The longitudinal survey data was geocoded and a geo-spatial database was integrated to it. The geospatial database was composed of distance, elevation and hazard parameters with respect to the respondent’s household location. A set of Bivariate Probit (BP) model suggests that geospatial variables have had significant influences in explaining hurricane risk perception and evacuation behavior during both hurricanes. The findings also indicated that people made their evacuation decision in coherence with their risk perception. In addition, people updated their hurricane evacuation decision in a subsequent similar event.