20 resultados para Stereoscopic vision for design and display of footwear


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which Registered Dietitians (RD) promote exercise as part of diabetes self-management education to older diabetic adults has not been established. This study explored the exercise-related knowledge, design, and content of educational programs among RDs who were Certified Diabetes Educators (CDEs) and non-CDEs. The Exercise Teaching Questionnaire was completed by 94 CDEs and 73 non-CDEs in Florida, California, and Texas. ^ CDEs had significantly (p < 0.001) higher mean Knowledge, Design, and Content scores (11.8 ± 1.1, 33.5 ± 9.4, 26.9 ± 4.8, respectively) than non-CDEs (11.1 ± 1.6, 29.2 ± 11.1, 22.4 ± 7.4, respectively). However, Knowledge means for both CDEs and non-CDEs were above the 85 percentile. Design and content scale responses showed that while dietitians provided basic information about safety and benefits related to exercise, they frequently reported “never” or only “sometimes” making exercise recommendations. ^ Although these results suggest that RDs are knowledgeable about exercise for older adults with Type 2 diabetes, greater importance should be made on training RDs to promote exercise, perhaps with an emphasis on a comprehensive team approach. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic.^ This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic. This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation documents the everyday lives and spaces of a population of youth typically constructed as out of place, and the broader urban context in which they are rendered as such. Thirty-three female and transgender street youth participated in the development of this youth-based participatory action research (YPAR) project utilizing geo-ethnographic methods, auto-photography, and archival research throughout a six-phase, eighteen-month research process in Bogotá, Colombia. ^ This dissertation details the participatory writing process that enabled the YPAR research team to destabilize dominant representations of both street girls and urban space and the participatory mapping process that enabled the development of a youth vision of the city through cartographic images. The maps display individual and aggregate spatial data indicating trends within and making comparisons between three subgroups of the research population according to nine spatial variables. These spatial data, coupled with photographic and ethnographic data, substantiate that street girls’ mobilities and activity spaces intersect with and are altered by state-sponsored urban renewal projects and paramilitary-led social cleansing killings, both efforts to clean up Bogotá by purging the city center of deviant populations and places. ^ Advancing an ethical approach to conducting research with excluded populations, this dissertation argues for the enactment of critical field praxis and care ethics within a YPAR framework to incorporate young people as principal research actors rather than merely voices represented in adultist academic discourse. Interjection of considerations of space, gender, and participation into the study of street youth produce new ways of envisioning the city and the role of young people in research. Instead of seeing the city from a panoptic view, Bogotá is revealed through the eyes of street youth who participated in the construction and feminist visualization of a new cartography and counter-map of the city grounded in embodied, situated praxis. This dissertation presents a socially responsible approach to conducting action-research with high-risk youth by documenting how street girls reclaim their right to the city on paper and in practice; through maps of their everyday exclusion in Bogotá followed by activism to fight against it.^