21 resultados para Rhizophora Mangle L.
Resumo:
Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.
Resumo:
Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.
Resumo:
This study demonstrates the compositional heterogeneity of a protein-like fluorescence emission signal (T-peak; excitation/emission maximum at 280/325 nm) of dissolved organic matter (DOM) samples collected from subtropical river and estuarine environments. Natural water samples were collected from the Florida Coastal Everglades ecosystem. The samples were ultrafiltered and excitation–emission fluorescence matrices were obtained. The T-peak intensity correlated positively with N concentration of the ultrafiltered DOM solution (UDON), although, the low correlation coefficient (r2=0.140, p<0.05) suggested the coexistence of proteins with other classes of compounds in the T-peak. As such, the T-peak was unbundled on size exclusion chromatography. The elution curves showed that the T-peak was composed of two compounds with distinct molecular weights (MW) with nominal MWs of about >5×104 (T1) and ∼7.6×103 (T2) and with varying relative abundance among samples. The T1-peak intensity correlated strongly with [UDON] (r2=0.516, p<0.001), while T2-peak did not, which suggested that the T-peak is composed of a mixture of compounds with different chemical structures and ecological roles, namely proteinaceous materials and presumably phenolic moieties in humic-like substances. Natural source of the latter may include polyphenols leached from senescent plant materials, which are important precursors of humic substances. This idea is supported by the fact that polyphenols, such as gallic acid, an important constituent of hydrolysable tannins, and condensed tannins extracted from red mangrove (Rhizophora mangle) leaves exhibited the fluorescence peak in the close vicinity of the T-peak (260/346 and 275/313 nm, respectively). Based on this study the application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input.
Resumo:
We describe the fate of mangrove leaf tannins in aquatic ecosystems and their possible influence on dissolved organic nitrogen (DON) cycling. Tannins were extracted and purified from senescent yellow leaves of the red mangrove (Rhizophora mangle) and used for a series of model experiments to investigate their physical and chemical reactivity in natural environments. Physical processes investigated included aggregation, adsorption to organic matter-rich sediments, and co-aggregation with DON in natural waters. Chemical reactions included structural change, which was determined by excitation–emission matrix fluorescence spectra, and the release of proteins from tannin–protein complexes under solar-simulated light exposure. A large portion of tannins can be physically eliminated from aquatic environments by precipitation in saline water and also by binding to sediments. A portion of DON in natural water can coprecipitate with tannins, indicating that mangrove swamps can influence DON cycling in estuarine environments. The chemical reactivity of tannins in natural waters was also very high, with a half-life of less than 1 d. Proteins were released gradually from tannin–protein complexes incubated under light conditions but not under dark conditions, indicating a potentially buffering role of tannin– protein complexes on DON recycling in mangrove estuaries. Although tannins are not detected at a significant level in natural waters, they play an important ecological role by preserving nitrogen and buffering its cycling in estuarine ecosystems through the prevention of rapid DON export/loss from mangrove fringe areas and/or from rapid microbial mineralization.
Resumo:
We conducted a series of experiments whereby dissolved organic matter (DOM) was leached from various wetland and estuarine plants, namely sawgrass (Cladium jamaicense), spikerush (Eleocharis cellulosa), red mangrove (Rhizophora mangle), cattail (Typha domingensis), periphyton (dry and wet mat), and a seagrass (turtle grass; Thalassia testudinum). All are abundant in the Florida Coastal Everglades (FCE) except for cattail, but this species has a potential to proliferate in this environment. Senescent plant samples were immersed into ultrapure water with and without addition of 0.1% NaN3 (w/ and w/o NaN3, respectively) for 36 days. We replaced the water every 3 days. The amount of dissolved organic carbon (DOC), sugars, and phenols in the leachates were analyzed. The contribution of plant leachates to the ultrafiltered high molecular weight fraction of DOM (>1 kDa; UDOM) in natural waters in the FCE was also investigated. UDOM in plant leachates was obtained by tangential flow ultrafiltration and its carbon and phenolic compound compositions were analyzed using solid state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy and thermochemolysis in the presence of tetramethylammonium hydroxide (TMAH thermochemolysis), respectively. The maximum yield of DOC leached from plants over the 36-day incubations ranged from 13.0 to 55.2 g C kg−1 dry weight. This amount was lower in w/o NaN3 treatments (more DOC was consumed by microbes than produced) except for periphyton. During the first 2 weeks of the 5 week incubation period, 60–85% of the total amount of DOC was leached, and exponential decay models fit the leaching rates except for periphyton w/o NaN3. Leached DOC (w/ NaN3) contained different concentrations of sugars and phenols depending on the plant types (1.09–7.22 and 0.38–12.4 g C kg−1 dry weight, respectively), and those biomolecules comprised 8–34% and 4–28% of the total DOC, respectively. This result shows that polyphenols that readily leach from senescent plants can be an important source of chromophoric DOM (CDOM) in wetland environments. The O-alkyl C was found to be the major C form (55±9%) of UDOM in plant leachates as determined by 13C CPMAS NMR. The relative abundance of alkyl C and carbonyl C was consistently lower in plant-leached UDOM than that in natural water UDOM in the FCE, which suggests that these constituents increase in relative abundance during diagenetic processing. TMAH thermochemolysis analysis revealed that the phenolic composition was different among the UDOM leached from different plants, and was expected to serve as a source indicator of UDOM in natural water. Polyphenols are, however, very reactive and photosensitive in aquatic environments, and thus may loose their plant-specific molecular characteristics shortly. Our study suggests that variations in vegetative cover across a wetland landscape will affect the quantity and quality of DOM leached into the water, and such differences in DOM characteristics may affect other biogeochemical processes.
Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest
Resumo:
1. Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2. Wood disks (8–10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3. A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4. Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ± 2% of dry weight), while Laguncularia racemosa had the lowest (10 ± 2%). Labile components decayed at rates of 0.37–23.71% month−1, while refractory components decayed at rates of 0.001–0.033% month−1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5. Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6. Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7. As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests.