18 resultados para Polynomial-time algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronics industry, is experiencing two trends one of which is the drive towards miniaturization of electronic products. The in-circuit testing predominantly used for continuity testing of printed circuit boards (PCB) can no longer meet the demands of smaller size circuits. This has lead to the development of moving probe testing equipment. Moving Probe Test opens up the opportunity to test PCBs where the test points are on a small pitch (distance between points). However, since the test uses probes that move sequentially to perform the test, the total test time is much greater than traditional in-circuit test. While significant effort has concentrated on the equipment design and development, little work has examined algorithms for efficient test sequencing. The test sequence has the greatest impact on total test time, which will determine the production cycle time of the product. Minimizing total test time is a NP-hard problem similar to the traveling salesman problem, except with two traveling salesmen that must coordinate their movements. The main goal of this thesis was to develop a heuristic algorithm to minimize the Flying Probe test time and evaluate the algorithm against a "Nearest Neighbor" algorithm. The algorithm was implemented with Visual Basic and MS Access database. The algorithm was evaluated with actual PCB test data taken from Industry. A statistical analysis with 95% C.C. was performed to test the hypothesis that the proposed algorithm finds a sequence which has a total test time less than the total test time found by the "Nearest Neighbor" approach. Findings demonstrated that the proposed heuristic algorithm reduces the total test time of the test and, therefore, production cycle time can be reduced through proper sequencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.