32 resultados para PERFORMANCE-CHARACTERISTICS
Resumo:
The climate of a school can be defined as the set of internal characteristics that distinguishes one school from another and influences the behavior of its members (Hoy & Hannum, 1997). Schools with a positive climate have been shown to positively impact students (Hoy, 1972). A principal’s leadership style influences the climate that, in turn, impacts student performance. ^ In this work, the researcher investigated Miami-Dade County Public Schools in order to determine if there was a relationship between instructional staff members’ perceptions of their school’s principals, a derivative of the district’s school climate studies, and their schools’ grades. ^ Eight School Climate Survey items were inter-correlated. The smallest intercorrelation was .83, which is still a large intercorrelation, and the largest intercorrelation was .96. Pearson’s correlation analysis (Healey, 2004) was run to determine the relationship between schools’ earned points and averaged survey responses. Survey items 8, 9, 12 and 13 had weak (less than .30) positive correlations to schools’ earned points. Survey items 7, 10, 11 and 14 had moderate (above .30) positive correlations to schools’ earned points. ^ The researcher created a composite variable (Pallant, 2007) from all the School Climate Survey responses. This composite variable, titled Principal Leadership Score, allowed the researcher to determine that approximately 9% of the variance in the points earned by schools in 2009 can be accounted for by how teachers in this study perceived the leadership of their principals. ^ This study’s findings of a moderate positive correlation between teachers’ perceptions of principal leadership and school performance supports earlier research linking school climate and school performance. Due to the fact that the leadership of the principal affects, either positively or negatively, the learning and working environment of students and teachers, it is recommended that principals use the eight School Climate Survey items examined within this study as guides (Pepper & Thomas, 2002). Through focusing on these survey items, principals may be propelled to self-identify their leadership strengths as well as leadership weaknesses.^
Resumo:
Salinity, water temperature, and chlorophyll a (chl-a) biomass were used as performance measures in the period 1999–2001 to evaluate the effect of a hydrological rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM)–Pajarales lagoon complex, Colombia where freshwater diversions were initiated in 1995 and completed in 1998. The objective of this study was to evaluate how diversions of freshwater into previously hypersaline (>80) environments changed the spatial and temporal distribution of environmental characteristics. Following the diversion, 19 surveys and transects using a flow-through system were surveyed in the CGSM–Pajarales complex to continuously measure selected water quality parameters. Geostatistical analysis indicates that hydrology and salinity regimes and water circulation patterns in the CGSM lagoon are largely controlled by freshwater discharge from the Fundacion, Aracataca, and Sevilla Rivers. Residence times in the CGSM lagoon were similar before (15.5 ± 3.8 days) and after (14.2 ± 2.0 days) the rehabilitation project and indicated that the system is flushed regularly. In contrast, chl-a biomass was highly variable in the CGSM–Pajarales lagoon complex and not related to discharge patterns. Mean annual chl-a biomass (44–250 μg L−1) following the diversion project was similar to values recorded since the 1980s and still remains among the highest reported in coastal systems around the world owing to its unique hydrology regulated by the Magdalena River and Sierra Nevada de Santa Marta watersheds and the high teleconnection to the El Niño Southern Oscillation (ENSO). Our results confirm that the reduction in salinity in the CGSM lagoon and Pajarales complex during 1999–2000 was largely driven by high precipitation (2500 mm) induced by the ENSO–La Niña rather than by the freshwater diversions.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
The first part of the study examined the effect of industry risk changes on perceived audit risk at the financial statement level and whether these changes depended on individual differences such as experience and tolerance for ambiguity. ^ Forty-eight auditors from two offices of one of the “Big 5” CPA firms participated in this study. The ANOVA results supported the effect of industry risk in the assessment of audit risk at the financial statement level. Higher industry risk was associated with higher perceived audit risk. Tolerance for ambiguity was also significant in explaining the changes in the assessment of audit risk. Auditors with a high tolerance for ambiguity perceived lower audit risk than auditors with a low tolerance for ambiguity. Although ANOVA results did not find experience to be significant, a t-test for experience showed it to be marginally significant and inversely related to audit risk. ^ The second part of this study examined whether differences in perceived audit risk at the financial statement level altered the extent, nature or timing of the planned auditing procedures. The results of the MANOVA suggested an overall audit risk effect at the financial statement level. Perceived audit risk was significant in explaining the variation in the number of hours planned for the total cycle and the number of hours p1anned for the tests of balances and details. Perceived audit risk was not significant in determining the analytical review procedures planned, but assessed inherent risk at the cycle level was significant. The higher the inherent risk the more analytical procedures were planned. Perceived audit risk was not significant in explaining the timing of the procedures, but individual differences were significant. The results showed that experienced auditors and those with a high tolerance for ambiguity were less likely to postpone the performance of the interim procedures or the time at which the majority of audit work would be done. ^
Resumo:
One of the most important goals of American educational institutions over the past 47 years has been the desegregation of pubic schools. This goal reflected the Supreme Court's decision in Brown v. Board of Education that segregated schools are inherently unequal and deny segregated minority students equal educational opportunities as mandated by the United States Constitution. This study examined the extent, nature, and causes of segregation in the Miami-Dade County Public Schools and the effects of segregation on the educational performance of minority students. ^ Research questions were analyzed using demographic data from the United States Census Bureau, the Metro-Dade County Planning Department, the United States Commission on Civil Rights, the United States Department of Education, and the Miami Dade County Public Schools. The extent of residential and school segregation in MiamiDade County was measured using the Dissimilarity Index. Historical and sociological literature were analyzed to explain the causes of school segregation, the socioeconomic characteristics of segregated minority students, and the relationship between school segregation and equal educational opportunities. A causal-comparative research method was chosen because it is the most appropriate method to compare the educational performance of minority students in segregated schools with the educational performance of minority students in desegregated schools. ^ The results of this study demonstrates that there is a high degree of residential and school segregation in Miami-Dade County, Florida. Furthermore, the Miami-Dade County Public Schools are characterized by a high degree of socioeconomic segregation. This is significant considering that the socioeconomic status of a student's peers is, after the student's family background, the most influential factor in determining academic performance. Clearly, schools and other social institutions must continue efforts to throughly desegregate the school district and improve minority student academic performance. A racially and economically desegregated school system would constitute an important component in Miami-Dade County's efforts to provide equal educational opportunities to all students. ^
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
Many firms from emerging markets flocked to developed countries at high cost with hopes of acquiring strategic assets that are difficult to obtain in home countries. Adequate research has focused on the motivations and strategies of emerging country firms' (ECFs') internationalization, while limited studies have explored their survival in advanced economies years after their venturing abroad. Due to the imprinting effect of home country institutions that inhibit their development outside their home market, ECFs are inclined to hire executives with international background and affiliate to world-wide organizations for the purpose of linking up with the global market, embracing multiple perspectives for strategic decisions, and absorbing the knowledge of foreign markets. However, the effects of such orientation on survival are under limited exploration. Motivated by the discussion above, I explore ECFs' survival and stock performance in a developed country (U.S.). Applying population ecology, signaling theory and institutional theory, the dissertation investigates the characteristics of ECFs that survived in the developed country (U.S.), tests the impacts of global orientation on their survival, and examines how global-oriented activities (i.e. joining United Nations Global Compact) affect their stock performance. The dissertation is structured in the form of three empirical essays. The first essay explores and compares different characteristics of ECFs and developed country firms (DCFs) that managed to survive in the U.S. The second essay proposes the concept of global orientation, and tests its influences on ECFs' survival. Employing signaling theory and institutional theory, the third essay investigates stock market reactions to announcements of United Nation Global Compact (UNGC) participation. The dissertation serves to explore the survival of ECFs in the developed country (U.S.) by comparison with DCFs, enriching traditional theories by testing non-traditional arguments in the context of ECFs' foreign operation, and better informing practitioners operating ECFs about ways of surviving in developed countries and improving stockholders' confidence in their future growth.
Resumo:
Investigation of the performance of engineering project organizations is critical for understanding and eliminating inefficiencies in today’s dynamic global markets. The existing theoretical frameworks consider project organizations as monolithic systems and attribute the performance of project organizations to the characteristics of the constituents. However, project organizations consist of complex interdependent networks of agents, information, and resources whose interactions give rise to emergent properties that affect the overall performance of project organizations. Yet, our understanding of the emergent properties in project organizations and their impact on project performance is rather limited. This limitation is one of the major barriers towards creation of integrated theories of performance assessment in project organizations. The objective of this paper is to investigate the emergent properties that affect the ability of project organization to cope with uncertainty. Based on the theories of complex systems, we propose and test a novel framework in which the likelihood of performance variations in project organizations could be investigated based on the environment of uncertainty (i.e., static complexity, dynamic complexity, and external source of disruption) as well as the emergent properties (i.e., absorptive capacity, adaptive capacity, and restorative capacity) of project organizations. The existence and significance of different dimensions of the environment of uncertainty and emergent properties in the proposed framework are tested based on the analysis of the information collected from interviews with senior project managers in the construction industry. The outcomes of this study provide a novel theoretical lens for proactive bottom-up investigation of performance in project organizations at the interface of emergent properties and uncertainty
Resumo:
The present dissertation consists of two studies that combine personnel selection, safety performance, and job performance literatures to answer an important question: are safe workers better workers? Study 1 tested a predictive model of safety performance to examine personality characteristics (conscientiousness and agreeableness), and two novel behavioral constructs (safety orientation and safety judgment) as predictors of safety performance in a sample of forklift loaders/operators (N = 307). Analyses centered on investigating safety orientation as a proximal predictor and determinant of safety performance. Study 2 replicated Study 1 and explored the relationship between safety performance and job performance by testing an integrative model in a sample of machine operators and construction crewmembers (N = 323). Both Study 1 and Study 2 found conscientiousness, agreeableness, and safety orientation to be good predictors of safety performance. While both personality and safety orientation were positively related to safety performance, safety orientation proved to be a more proximal determinant of safety performance. Across studies, results surrounding safety judgment as a predictor of safety performance were inconclusive, suggesting possible issues with measurement of the construct. Study 2 found a strong relationship between safety performance and job performance. In addition, safety performance served as a mediator between predictors (conscientiousness, agreeableness and safety orientation) and job performance. Together these findings suggest that safe workers are indeed better workers, challenging previous viewpoints to the contrary. Further, results implicate the viability of personnel selection as means of promoting safety in organizations.^
Resumo:
Using multiple regression analysis, lodging managers’ annual mean salaries in 143 Metropolitan Statistical Areas (MSA) within the U.S. were analyzed to identify what relationships existed with variables related to general MSA characteristics, along with the lodging industry’s size and performance. By examining the relationship between these variables, the authors predict the long-term possibility of predicting lodging industry managers’ salaries. These predictions may have an impact on financial performance of an individual lodging property or organization. Through this paper, this concept was applied and explored within U.S. MSAs. These findings may have value for a variety of stakeholders, including human resources practitioners, the hospitality education community, and individuals considering lodging management careers.
Resumo:
To stay competitive, many employers are looking for creative and innovative employees to add value to their organization. However, current models of job performance overlook creative performance as an important criterion to measure in the workplace. The purpose of this dissertation is to conduct two separate but related studies on creative performance that aim to provide support that creative performance should be included in models of job performance, and ultimately included in performance evaluations in organizations. Study 1 is a meta-analysis on the relationship between creative performance and task performance, and the relationship between creative performance and organizational citizenship behavior (OCB). Overall, I found support for a medium to large corrected correlation for both the creative performance-task performance (ρ = .51) and creative performance-OCB (ρ = .49) relationships. Further, I also found that both rating-source and study location were significant moderators. Study 2 is a process model that includes creative performance alongside task performance and OCB as the outcome variables. I test a model in which both individual differences (specifically: conscientiousness, extraversion, proactive personality, and self-efficacy) and job characteristics (autonomy, feedback, and supervisor support) predict creative performance, task performance, and OCB through engagement as a mediator. In a sample of 299 employed individuals, I found that all the individual differences and job characteristics were positively correlated with all three performance criteria. I also looked at these relationships in a multiple regression framework and most of the individual differences and job characteristics still predicted the performance criteria. In the mediation analyses, I found support for engagement as a significant mediator of the individual differences-performance and job characteristics-performance relationships. Taken together, Study 1 and Study 2 support the notion that creative performance should be included in models of job performance. Implications for both researchers and practitioners alike are discussed.
Resumo:
Disk drives are the bottleneck in the processing of large amounts of data used in almost all common applications. File systems attempt to reduce this by storing data sequentially on the disk drives, thereby reducing the access latencies. Although this strategy is useful when data is retrieved sequentially, the access patterns in real world workloads is not necessarily sequential and this mismatch results in storage I/O performance degradation. This thesis demonstrates that one way to improve the storage performance is to reorganize data on disk drives in the same way in which it is mostly accessed. We identify two classes of accesses: static, where access patterns do not change over the lifetime of the data and dynamic, where access patterns frequently change over short durations of time, and propose, implement and evaluate layout strategies for each of these. Our strategies are implemented in a way that they can be seamlessly integrated or removed from the system as desired. We evaluate our layout strategies for static policies using tree-structured XML data where accesses to the storage device are mostly of two kinds - parent-tochild or child-to-sibling. Our results show that for a specific class of deep-focused queries, the existing file system layout policy performs better by 5-54X. For the non-deep-focused queries, our native layout mechanism shows an improvement of 3-127X. To improve performance of the dynamic access patterns, we implement a self-optimizing storage system that performs rearranges popular block accesses on a dedicated partition based on the observed workload characteristics. Our evaluation shows an improvement of over 80% in the disk busy times over a range of workloads. These results show that applying the knowledge of data access patterns for allocation decisions can substantially improve the I/O performance.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
To stay competitive, many employers are looking for creative and innovative employees to add value to their organization. However, current models of job performance overlook creative performance as an important criterion to measure in the workplace. The purpose of this dissertation is to conduct two separate but related studies on creative performance that aim to provide support that creative performance should be included in models of job performance, and ultimately included in performance evaluations in organizations. Study 1 is a meta-analysis on the relationship between creative performance and task performance, and the relationship between creative performance and organizational citizenship behavior (OCB). Overall, I found support for a medium to large corrected correlation for both the creative performance-task performance (ρ = .51) and creative performance-OCB (ρ = .49) relationships. Further, I also found that both rating-source and study location were significant moderators. Study 2 is a process model that includes creative performance alongside task performance and OCB as the outcome variables. I test a model in which both individual differences (specifically: conscientiousness, extraversion, proactive personality, and self-efficacy) and job characteristics (autonomy, feedback, and supervisor support) predict creative performance, task performance, and OCB through engagement as a mediator. In a sample of 299 employed individuals, I found that all the individual differences and job characteristics were positively correlated with all three performance criteria. I also looked at these relationships in a multiple regression framework and most of the individual differences and job characteristics still predicted the performance criteria. In the mediation analyses, I found support for engagement as a significant mediator of the individual differences-performance and job characteristics-performance relationships. Taken together, Study 1 and Study 2 support the notion that creative performance should be included in models of job performance. Implications for both researchers and practitioners alike are discussed.^
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.